PP
P.A. Procel Moya
71 records found
1
The fabrication process of interdigitated-back-contacted silicon heterojunction (IBC-SHJ) solar cells has been significantly simplified with the development of the so-called tunnel-IBC architecture. This architecture utilizes a highly conductive (p)-type nanocrystalline silicon (
...
Transition metal oxide (TMO) thin films exhibit large bandgap and hold great potential for enhancing the performance of silicon heterojunction (SHJ) solar cells by increasing the short-circuit current density significantly. On the other hand, achieving precise control over the el
...
Two terminal (2T) perovskite/copper-indium-gallium-selenide (CIGS) tandem solar cells combine high conversion efficiency with lightweight flexible substrates which can decrease manufacturing and installation costs. In order to improve the power conversion efficiency of these tand
...
Reducing indium consumption in transparent conductive oxide (TCO) layers is crucial for mass production of silicon heterojunction (SHJ) solar cells. In this contribution, optical simulation-assisted design and optimization of SHJ solar cells featuring MoOx hole collect
...
A Review
Application of Doped Hydrogenated Nanocrystalline Silicon Oxide in High Efficiency Solar Cell Devices
Due to the unique microstructure of hydrogenated nanocrystalline silicon oxide (nc-SiOx:H), the optoelectronic properties of this material can be tuned over a wide range, which makes it adaptable to different solar cell applications. In this work, the authors review th
...
Monolithic perovskite/c-Si tandem solar cells have attracted enormous research attention and have achieved efficiencies above 30%. This work describes the development of monolithic tandem solar cells based on silicon heterojunction (SHJ) bottom- and perovskite top-cells and highl
...
Silicon heterojunction (SHJ) solar cells have reached high power conversion efficiency owing to their effective passivating contact structures. Improvements in the optoelectronic properties of these contacts can enable higher device efficiency, thus further consolidating the comm
...
Silicon heterojunction (SHJ) solar cells have achieved a record efficiency of 26.81% in a front/back-contacted (FBC) configuration. Moreover, thanks to their advantageous high VOC and good infrared response, SHJ solar cells can be further combined with wide bandgap per
...
Passivating contacts are crucial for realizing high-performance crystalline silicon solar cells. Herein, contact formation by plasma-enhanced chemical vapor deposition (PECVD) followed by an annealing step is focused on. Poly-SiOx passivating contacts by combining plas
...
Passivating contacts based on poly-Si have enabled record-high c-Si solar cell efficiencies due to their excellent surface passivation quality and carrier selectivity. The eventual existence of pinholes within the ultra-thin SiOx layer is one of the key factors for carrier collec
...
The integration of photovoltaic (PV) technology in urban environments poses new challenges for the design of PV modules. In particular, the poor shading tolerance of conventional PV modules strongly limits the energy performance of urban PV systems. In this work, we analyze how i
...
Bifacial (BF) copper-plated crystalline silicon solar cell is an attractive topic to concurrently reduce silver consumption and maintain good device performance. However, it is still challenging to realize a high aspect ratio (AR) of the metal fingers. Herein, a new type of hybri
...
Effects of (i)a-Si
H deposition temperature on high-efficiency silicon heterojunction solar cells
Excellent surface passivation induced by (i)a-Si:H is critical to achieve high-efficiency silicon heterojunction (SHJ) solar cells. This is key for conventional single-junction cell applications but also for bottom cell application in tandem devices. In this study, we investigate
...
In this chapter, we have reviewed candidates for further enhancement of cell efficiencies beyond those of today's mainstream PERC cells, with a focus on technological aspects rather than, e.g. cost. Regarding silicon single junctions, the prevalent theme is the use of carrier-sel
...
We compared the morphology and Raman response of nanoscale shaped surfaces of Si substrates versus monocrystalline Si. Samples were structured by reactive ion etching, and four of them were covered by a RuO2-IrO2 layer. Raman bands, centred at approx. 520 cm
...
Two terminal multi-junction (MJ) photovoltaic (PV) devices are well established concepts to increase the solar-to-electrical power conversion in reference to single PV junctions. In multi-junction PV devices two consecutive sub-cells are interconnected using a tunnel recombinatio
...
Crystalline silicon solar cells with passivating contacts based on doped poly-Si exhibit high optical parasitic losses. Aiming at minimizing these losses, we developed the oxygen-alloyed poly-Si (poly-SiOx) as suitable material for passivating contacts. From passivation point of
...
Organic-inorganic metal halide perovskites have attracted a considerable interest in the photovoltaic scientific community demonstrating a rapid and unprecedented increase in conversion efficiency in the last decade. Besides the stunning progress in performance, the understanding
...
Reducing indium consumption, which is related to the transparent conductive oxide (TCO) use, is a key challenge for scaling up silicon heterojunction (SHJ) solar cell technology to terawatt level. In this work, we developed bifacial SHJ solar cells with reduced TCO thickness. We
...
Thin films of transition metal oxides such as molybdenum oxide (MoOx) are attractive for application in silicon heterojunction solar cells for their potential to yield large short-circuit current density. However, full control of electrical properties of thin MoOx
...