O. Isabella
263 records found
1
...
Reducing indium consumption in transparent conductive oxide (TCO) layers is crucial for mass production of silicon heterojunction (SHJ) solar cells. In this contribution, optical simulation-assisted design and optimization of SHJ solar cells featuring MoOx hole collect
...
The growing global energy demand increases the need for renewable energy sources. This increase requires land to be occupied, competing with other activities such as agriculture and residency. In such a situation, renewable energy sources expand to other environments like the oce
...
Interdigitated back contact (IBC) architecture can yield among the highest silicon wafer-based solar cell conversion efficiencies. Since both polarities are realized on the rear side, there is a definite need for a patterning step. Some of the common patterning techniques involve
...
Solar photovoltaic (PV) energy is variable. The output power can change considerably in a matter of minutes, imposing challenges on the control of systems connected downstream. The power from these systems can be smoothed using electric storage, potentially increasing the system
...
The surge in global solar photovoltaic (PV) deployment as a measure to combat climate change is undeniable. However, this growth comes with its own set of challenges, particularly concerning the materials required for silicon-based PV modules. In this study, we quantify future ma
...
This paper presents dynamic air-based models of a hybrid photovoltaic-thermal (PVT) collector. The models are developed with the aim of estimating the temperature of the collector components and therefore of estimating the annual generation of electrical energy and thermal energy
...
A Review
Application of Doped Hydrogenated Nanocrystalline Silicon Oxide in High Efficiency Solar Cell Devices
Due to the unique microstructure of hydrogenated nanocrystalline silicon oxide (nc-SiOx:H), the optoelectronic properties of this material can be tuned over a wide range, which makes it adaptable to different solar cell applications. In this work, the authors review th
...
Lead halide perovskites are a promising class of materials for solar cell applications. The perovskite bandgap depends on the material composition and is highly tunable. Opto-electrical device modelling is commonly used to find the optimum perovskite bandgap that maximizes device
...
Two terminal (2T) perovskite/copper-indium-gallium-selenide (CIGS) tandem solar cells combine high conversion efficiency with lightweight flexible substrates which can decrease manufacturing and installation costs. In order to improve the power conversion efficiency of these tand
...
The fabrication process of interdigitated-back-contacted silicon heterojunction (IBC-SHJ) solar cells has been significantly simplified with the development of the so-called tunnel-IBC architecture. This architecture utilizes a highly conductive (p)-type nanocrystalline silicon (
...
Investigation on simultaneous energy harvesting and visible light communication using commercial c-Si PV cells
Bandwidth characterization under colored LEDs
Visible light communication (VLC) is a promising complement considering the rising radio frequency spectrum congestion. However, photodiode receivers degrade rapidly under high ambient light (>200 W/m2). Photovoltaic (PV) cells, designed for outdoor applications, of
...
This work presents a practical approach to designing an optical filter for thermal management for photovoltaic modules. The approach emphasizes the practicality of manufacturing over optical performance. Simulation work demonstrates that, for an interdigitated back contact solar
...
Nowadays, an increasing share of photovoltaic (PV) systems makes use of module- or submodule-level power electronics (PE). Furthermore, PE is used in stand-alone devices powered by PV-storage solutions. One way to facilitate further implementation of PE in PV applications is to i
...
This work is a long-term, interannual, and experimental study conducted in multiple locations. It studies the effects of phase change materials (PCMs) on photovoltaic modules’ performance by reducing their operational temperature. Two PV modules were manufactured so that PCM slab
...
Transition metal oxide (TMO) thin films exhibit large bandgap and hold great potential for enhancing the performance of silicon heterojunction (SHJ) solar cells by increasing the short-circuit current density significantly. On the other hand, achieving precise control over the el
...
Clouds moving in front or away from the sun are the leading cause of irradiance variability. These variations have a repercussion on the electricity production of photovoltaic systems. Predicting such changes is essential for proper control of these systems and for maintaining gr
...
Passivating contacts are crucial for realizing high-performance crystalline silicon solar cells. Herein, contact formation by plasma-enhanced chemical vapor deposition (PECVD) followed by an annealing step is focused on. Poly-SiOx passivating contacts by combining plas
...
Single junction crystalline silicon (c-Si) solar cells are reaching their practical efficiency limit whereas perovskite/c-Si tandem solar cells have achieved efficiencies above the theoretical limit of single junction c-Si solar cells. Next to low-thermal budget silicon heterojun
...
Due to the inherent uncertainty in photovoltaic (PV) energy generation, an accurate power forecasting is essential to ensure a reliable operation of PV systems and a safe electric grid. Machine learning (ML) techniques have gained popularity on the development of this task due to
...
The preferential orientation of the perovskite (PVK) is typically accomplished by manipulation of the mixed cation/halide composition of the solution used for wet processing. However, for PVKs grown by thermal evaporation, this has been rarely addressed. It is unclear how variati
...