Controllable Simultaneous Bifacial Cu-Plating for High-Efficiency Crystalline Silicon Solar Cells
More Info
expand_more
Abstract
Bifacial (BF) copper-plated crystalline silicon solar cell is an attractive topic to concurrently reduce silver consumption and maintain good device performance. However, it is still challenging to realize a high aspect ratio (AR) of the metal fingers. Herein, a new type of hybrid-shaped Cu finger is electromagnetically fabricated in a BF plating process. Cyclic voltammetry is employed to disclose the electrochemical behaviors of cupric ions in monofacial and simultaneous BF Cu-plating processes, such that the controllability of the plating process could be assessed. The optimal hybrid Cu finger is composed of a rectangular bottom part and a round top part, such that an utmost effective AR value of 1.73 is reached. In BF Cu-plating, two sub-three-electrode electrochemical cells are employed to realize equal metal finger heights on both sides of the wafer. Compared to our low thermal-budget screen-printing metallization, the Cu-plated silicon heterojunction devices show both optical and electrical advantages (based on lab-scale tests). The champion BF Cu-plated device shows a front-side efficiency of 22.1% and a bifaciality factor of 0.99.