MM

M.B. Minneboo

16 records found

Individual cells and multicellular systems respond to cell-scale curvatures in their environments, guiding migration, orientation, and tissue formation. However, it remains largely unclear how cells collectively explore and pattern complex landscapes with curvature gradients acro ...
Physical patterns represent potential surface cues for promoting osteogenic differentiation of stem cells and improving osseointegration of orthopedic implants. Understanding the early cell–surface interactions and their effects on late cellular functions is essential for a ratio ...
We designed and fabricated a simple setup for the controlled crumpling of nanopatterned, surface-porous flat metallic sheets for the fabrication of volume-porous biomaterials and showed that crumpling can be considered as an efficient alternative to origami-inspired folding. Befo ...
Nanoparticles (NPs) have high multifunctional potential to simultaneously enhance implant osseointegration and prevent infections caused by antibiotic-resistant bacteria. Here, we present the first report on using plasma electrolytic oxidation (PEO) to incorporate different combi ...
Modulation of the immune response following the implantation of biomaterials can have beneficial effects on bone regeneration. This involves complex interactions between the inflammatory and osteogenic cells. Therefore, the study of cell-cell interactions using direct co-culture ...

Osteogenic and antibacterial surfaces on additively manufactured porous Ti-6Al-4V implants

Combining silver nanoparticles with hydrothermally synthesized HA nanocrystals

The recently developed additively manufacturing techniques have enabled the fabrication of porous biomaterials that mimic the characteristics of the native bone, thereby avoiding stress shielding and facilitating bony ingrowth. However, aseptic loosening and bacterial infection, ...

On the Use of Black Ti as a Bone Substituting Biomaterial

Behind the Scenes of Dual-Functionality

Despite the potential of small-scale pillars of black titanium (bTi) for killing the bacteria and directing the fate of stem cells, not much is known about the effects of the pillars’ design parameters on their biological properties. Here, three distinct bTi surfaces are designed ...
The surface topography of engineered extracellular matrices is one of the most important physical cues regulating the phenotypic polarization of macrophages. However, not much is known about the ways through which submicron (i.e., 100-1000 nm) topographies modulate the polarizati ...

Bioprinting of a Zonal-Specific Cell Density Scaffold

A Biomimetic Approach for Cartilage Tissue Engineering

The treatment of articular cartilage defects remains a significant clinical challenge. This is partially due to current tissue engineering strategies failing to recapitulate native organization. Articular cartilage is a graded tissue with three layers exhibiting different cell de ...
The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with the surface and continues until the complete integration of the device in its immediate environment. There is, however, ...
Surface biofunctionalization is frequently applied to enhance the functionality and longevity of orthopedic implants. Here, we investigated the osteogenic effects of additively manufactured porous Ti6Al4V implants whose surfaces were biofunctionalized using plasma electrolytic ox ...
Extrusion-based 3D printing followed by debinding and sintering is a powerful approach that allows for the fabrication of porous scaffolds from materials (or material combinations) that are otherwise very challenging to process using other additive manufacturing techniques. Iron ...
Fabricating large areas of geometrically complex and precisely controlled topographies is required for the studies of cell behavior on patterned surfaces. Direct laser writing (DLW) is an advanced 3D-fabrication technique, which facilitates the manufacturing of structures within ...
The holy grail of orthopedic implant design is to ward off both aseptic and septic loosening for long enough that the implant outlives the patient. Questing this holy grail is feasible only if orthopedic biomaterials possess a long list of functionalities that enable them to disc ...
Antibiotic-resistant bacteria are frequently involved in implant-associated infections (IAIs), making the treatment of these infections even more challenging. Therefore, multifunctional implant surfaces that simultaneously possess antibacterial activity and induce osseointegratio ...
Effective preventive measures against implant-associated infection (IAI) are desperately needed. Therefore, the development of self-defending implants with intrinsic antibacterial properties has gained significant momentum. Biomaterials biofunctionalized with silver (Ag) have res ...