PB
P. Boukany
63 records found
1
Electrotransfer of nucleic acids and proteins has become crucial in biotechnology for gene augmentation and genome editing. This review explores the applications of electrotransfer in both ex vivo and in vivo scenarios, emphasizing biomedical uses. We provide insights into comple
...
The growth and invasion of solid tumors are associated with changes in their viscoelastic properties, influenced by both internal cellular factors and physical forces in the tumor microenvironment. Due to the lack of a comprehensive investigation of tumor tissue viscoelasticity,
...
Bone cell response to additively manufactured 3D micro-architectures with controlled Poisson's ratio
Auxetic vs. non-auxetic meta-biomaterials
The Poisson's ratio and elastic modulus are two parameters determining the elastic behavior of biomaterials. While the effects of elastic modulus on the cell response is widely studied, very little is known regarding the effects of the Poisson's ratio. The micro-architecture of m
...
RNA interference (RNAi) is a powerful and rapidly developing technology that enables precise silencing of genes of interest. However, the clinical development of RNAi is hampered by the limited cellular uptake and stability of the transferred molecules. Electroporation (EP) is an
...
Tissue surface tension influences cell sorting and tissue fusion. Earlier mechanical studies suggest that multicellular spheroids actively reinforce their surface tension with applied force. Here we study this open question through high-throughput microfluidic micropipette aspira
...
Polydimethylsiloxane (PDMS) is one of the materials of choice for the fabrication of microfluidic chips. However, its broad application is constrained by its incompatibility with common organic solvents and the absence of surface anchoring groups for surface functionalization. Cu
...
Polycationic carriers promise low cost and scalable gene therapy treatments, however inefficient intracellular unpacking of the genetic cargo has limited transfection efficiency. Charge-reversing polycations, which transition from cationic to neutral or negative charge, can offer
...
Cell spheroids are in vitro multicellular model systems that mimic the crowded micro-environment of biological tissues. Their mechanical characterization can provide valuable insights in how single-cell mechanics and cell-cell interactions control tissue mechanics and self-organi
...
Within the tumor microenvironment (TME), cancer cells use mechanotransduction pathways to convert biophysical forces to biochemical signals. However, the underlying mechanisms and functional significance of these pathways remain largely unclear. The upregulation of mechanosensiti
...
Epithelial to mesenchymal transition (EMT) is crucial during embryonic development, tissue fibrosis, and cancer progression. Epithelial cells that display a cobblestone-like morphology can undergo a switch to mesenchymal-like phenotype, displaying an elongated spindle shape or a
...
We developed a localized single-cell electroporation chip to deliver exogenous biomolecules with high efficiency while maintaining high cell viability. In our microfluidic device, the cells are trapped in a microtrap array by flow, after which target molecules are supplied to the
...
An early step of metastasis requires a complex and coordinated migration of invasive tumor cells into the surrounding tumor microenvironment (TME), which contains extracellular matrix (ECM). It is being appreciated that 3D matrix-based microfluidic models have an advantage over c
...
Electroporation has become a powerful tool for nonviral delivery of various biomolecules such as nucleic acids, proteins, and chemotherapeutic drugs to virtually any living cell by exposing the cell membrane to an intense pulsed electric field. Different multiphysics and multisca
...
A functional vascular system is a prerequisite for bone repair as disturbed angiogenesis often causes non-union. Paracrine factors released from human bone marrow derived mesenchymal stromal cells (BMSCs) have angiogenic effects on endothelial cells. However, whether these paracr
...
In the research of cancer cell invasion and metastasis, recreation of physiologically relevant and faithful three-dimensional (3D) tumor models that recapitulate spatial architecture, spatiotemporal control of cell communication and signaling pathways, and integration of extracel
...
Due to increased energy demand, it is vital to enhance the recovery from existing oilfields. Polymer flooding is the most frequently used chemical enhanced oil recovery (cEOR) method in field applications that increases the oil sweep and displacement efficiencies. In recent years
...
The surface topography of engineered extracellular matrices is one of the most important physical cues regulating the phenotypic polarization of macrophages. However, not much is known about the ways through which submicron (i.e., 100-1000 nm) topographies modulate the polarizati
...
The surface topography of implantable devices is of crucial importance for guiding the cascade of events that starts from the initial contact of the cells with the surface and continues until the complete integration of the device in its immediate environment. There is, however,
...
Spheroids are widely used in vitro 3D multicellular model systems that mimic complex physiological microenvironments of tissues. As different cell types vary in deformability and adhesion, the choice of (heterogeneous) cell composition will define overall spheroid mechanics, incl
...
Transient physical disruption of cell membranes by electric pulses (or electroporation) has significance in biomedical and biological applications requiring the delivery of exogenous (bio)molecules to living cells. We demonstrate that actin networks regulate the cell membrane per
...