Lv

L.J.P. van den Broeke

16 records found

Carbonation in Low-Temperature CO2 Electrolyzers

Causes, Consequences, and Solutions

Electrochemical reduction of carbon dioxide (CO2) to useful products is an emerging power-to-X concept, which aims to produce chemicals and fuels with renewable electricity instead of fossil fuels. Depending on the catalyst, a range of chemicals can be produced from CO ...
Recently, deep eutectic solvents (DES) have been considered as possible electrolytes for the electrochemical reduction of CO2 to value-added products such as formic and oxalic acids. The applicability of pure DES as electrolytes is hindered by high viscosities. Mixtures of DES wi ...

Electrochemical Reduction of CO2to Oxalic Acid

Experiments, Process Modeling, and Economics

We performed H-cell and flow cell experiments to study the electrochemical reduction of CO2 to oxalic acid (OA) on a lead (Pb) cathode in various nonaqueous solvents. The effects of anolyte, catholyte, supporting electrolyte, temperature, water content, and cathode potential on t ...
One of the important parameters in water management of proton exchange membranes is the electro-osmotic drag (EOD) coefficient of water. The value of the EOD coefficient is difficult to justify, and available literature data on this for Nafion membranes show scattering from in ex ...
In the face of the rapidly dwindling carbon budgets, negative emission technologies are widely suggested as required to stabilize the Earth’s climate. However, finding cost-effective, socially acceptable, and politically achievable means to enable such technologies remains a chal ...
The electrochemical CO2 reduction reaction (CO2RR) is important for a sustainable future. Key insights into the reaction pathways have been obtained by density functional theory (DFT) analysis, but so far, DFT has been unable to give an overall understanding of selectivity trends ...
Formic acid (FA) is an interesting hydrogen (H2) and carbon monoxide (CO) carrier that can be produced by the electrochemical reduction of carbon dioxide (CO2) using renewable energy. The separation of FA from water is challenging due to the strong (cross)association of the compo ...

Electroreduction of CO2/CO to C2Products

Process Modeling, Downstream Separation, System Integration, and Economic Analysis

Direct electrochemical reduction of CO2 to C2 products such as ethylene is more efficient in alkaline media, but it suffers from parasitic loss of reactants due to (bi)carbonate formation. A two-step process where the CO2 is first electrochemically reduced to CO and subsequently ...
According to the ISO 14687-2:2019 standard, the water content of H2 fuel for transportation and stationary applications should not exceed 5 ppm (molar). To achieve this water content, zeolites can be used as a selective adsorbent for water. In this work, a computational screening ...
Force field-based molecular simulations were used to calculate thermal expansivities, heat capacities, and Joule-Thomson coefficients of binary (standard) hydrogen-water mixtures for temperatures between 366.15 and 423.15 K and pressures between 50 and 1000 bar. The mole fraction ...

High-pressure electrochemical reduction of CO2 to formic acid/formate

Effect of pH on the downstream separation process and economics

We use a high-pressure semicontinuous batch electrochemical reactor with a tin-based cathode to demonstrate that it is possible to efficiently convert CO2 to formic acid (FA) in low-pH (i.e., pH < pKa) electrolyte solutions. The effects of CO2 ...

High pressure electrochemical reduction of CO2 to formic acid/formate

A comparison between bipolar membranes and cation exchange membranes

A high pressure semicontinuous batch electrolyzer is used to convert CO2 to formic acid/formate on a tin-based cathode using bipolar membranes (BPMs) and cation exchange membranes (CEMs). The effects of CO2 pressure up to 50 bar, electrolyte concentration, f ...
In this work a model of an elevated pressure CO2 electrolyzer producing primarily formate or formic acid is presented. It consists of three parts: A model of the bulk electrolyte, the diffusion layer, and the ele ...
Hydrogen is one of the most popular alternatives for energy storage. Because of its low volumetric energy density, hydrogen should be compressed for practical storage and transportation purposes. Recently, electrochemical hydrogen compressors (EHCs) have been developed that are c ...

CO2 solubility in small carboxylic acids

Monte Carlo simulations and PC-SAFT modeling

Carbon dioxide (CO2) can electrochemically be converted to a range of products including formic acid (HCOOH) and acetic acid (CH3COOH). The yield of the products in an electrolysis cell depends on the solubility of CO2 in the (aqueous) mixture. In ...
A membrane reactor is presented for homogeneous catalysis in supercritical carbon dioxide with in situ catalyst separation. This concept offers the advantages of benign high-density gases, i.e., the possibility of achieving a high concentration of gaseous reactants in the same ph ...