Jv

468 records found

Chelator-impregnated resins have been studied earlier for the chemical separation of elements in aqueous solutions, but issues with their chemical stability have limited their use in the separation of (medical) radionuclides from their respective irradiated targets. We developed ...
To make green hydrogen more economically attractive, the energy losses in alkaline electrolysis need to be minimized while operating at high current densities (1 A cm−2). At these current densities the ohmic resistance and gas bubbles effects contribute largely to the ...
Nanoparticles are usually fluidized as agglomerates, which are in dynamic states of agglomeration and fragmentation. It is critical to consider the size distribution of agglomerates in modeling of the fluidization of nanoparticle agglomerates. In this article, the fluidization be ...
A new X-ray computed tomography technique for the purpose of imaging fluidized beds is presented. It consists of an experimental set-up with three stationary X-ray source and flat panel detector pairs, a geometric calibration and data processing workflow, and an image reconstruct ...
Stirring has been recognized in the literature as a promising technique for facilitating fluidization of cohesive powders, via inputting additional energy to counteract interparticle forces. However, the influence of operating conditions and stirrer configurations on flow behavio ...
Extending the lifetime of electrocatalytic materials is a major challenge in electrocatalysis. Here, we employ atomic layer deposition (ALD) to coat the surface of carbon black supported platinum nanoparticles (Pt/CB) with an ultra-thin layer of silicon dioxide (SiO2) to prevent ...

Fluidization behavior of stirred gas–solid fluidized beds

A combined X-ray and CFD–DEM–IBM study

Stirred gas–solid fluidized bed reactors are commercially employed in polyolefin manufacturing, but the complex gas–solid contacting dynamics pose challenges in design, scale-up, and operation. In this study, the influence of agitation on the fluidization performance of Geldart B ...
Vibro-assisted fluidization of cohesive micro-silica has been studied by means of X-ray imaging, pressure drop measurements, and off-line determination of the agglomerate size. Pressure drop and bed height development could be explained by observable phenomena taking place in the ...
In this study, the impact of different vibrational modes on the fluidization characteristics of cohesive micro- and nano-silica powder was examined. Fractional pressure drop, bed expansion measurements, and X-ray imaging were utilized to characterize the fluidization quality. The ...
The most common way to protect metallic structures from corrosion is through the use of passive and active corrosion protection with coatings containing dispersed corrosion inhibitor particles. Current approaches use inorganic microparticles containing mostly toxic and/or critica ...
Polydimethylsiloxane (PDMS) is one of the materials of choice for the fabrication of microfluidic chips. However, its broad application is constrained by its incompatibility with common organic solvents and the absence of surface anchoring groups for surface functionalization. Cu ...
In this study, we investigated the wettability and agglomeration characteristics of polymer microspheres coated with low-temperature deposited SiO2 in a fluidized bed atomic layer deposition (ALD) setup. Surface characterization revealed the presence of a significant a ...
Evaluation of the hydrodynamics of opaque multi-phase flows remains a challenging task, with implications for various industrial processes such as chemical processing, pharmaceutical, and mineral processing. Understanding how design and operational variables affect the complex be ...
Horizontal stirred bed reactors are widely used in the commercial manufacturing of polypropylene. However, a comprehensive understanding of the particle dynamics in horizontal stirred bed reactors remains elusive, primarily due to the lack of detailed experimental data. In this w ...
Aqueous electrolytes used in CO2 electroreduction typically have a CO2 solubility of around 34 mM under ambient conditions, contributing to mass transfer limitations in the system. Non-aqueous electrolytes exhibit higher CO2 solubility (by 5–8-fold) and also provide possibilities ...
The feasibility of gas phase deposition using a Ti alkoxide precursor for precise surface modification of catalysts was demonstrated by modifying a mesoporous alumina support with a Ti oxide overcoat. Titanium tetra-isopropoxide yields a Ti oxide layer that covers homogeneously t ...
Mechanical vibration has been broadly used to assist fluidization of cohesive powders, because of its capability to disrupt gas channels and agglomerates. However, the improvement reported in literature is mostly deduced from bulk response and ex-situ measurements, whereas the in ...
We show the potential of coupling numerical and experimental approaches in the fundamental understanding of catalytic reactors, and in particular fluidized beds. The applicability of the method was demonstrated in a lab-scale fluidized bed reactor for the platinum-based catalytic ...
Novel nanomaterial-based pesticide formulations are increasingly perceived as promising aids in the transition to more efficient agricultural production systems. The current understanding of potential unintended (eco)toxicological impacts of nano-formulated pesticides is scarce, ...

Techno-economic Assessment of CO2 Electrolysis

How Interdependencies between Model Variables Propagate Across Different Modeling Scales

The production of base chemicals by electrochemical conversion of captured CO2 has the potential to close the carbon cycle, thereby contributing to a future energy transition. With the feasibility of low-temperature electrochemical CO2 conversion demonstrate ...