SH

84 records found

DeHNSSo

The Delft Harmonic Navier-Stokes Solver for Nonlinear Stability Problems with Complex Geometric Features

A nonlinear Harmonic Navier-Stokes (HNS) framework is introduced for simulating instabilities in laminar spanwise-invariant shear layers, featuring sharp and smooth wall surface protuberances. While such cases play a critical role in the process of laminar-to-turbulent transition ...
Indirect combustion noise due to the interaction of flow inhomogeneities with a choked combustion-chamber exit is an important cause of combustion instability in solid rocket motors. Moreover, it is believed to be an issue in electrical-power generation turbines and aero-engines. ...
In §II. Theory, two reduced-order models are proposed, which the authors have termed: the quasi-steady model (§II.A. Quasi-steady one-dimensional model) & the inertial/hybrid model (§II.B. Quasi-one-dimensional pointmass model), respectively. N.b., in both cases time dependen ...
In this paper, we build on the work of Hughes and Sangalli (2007) dealing with the explicit computation of the Fine-Scale Greens’ function. The original approach chooses a set of functionals associated with a projector to compute the Fine-Scale Greens’ function. The construction ...
Numerical simulations and optimisation methods, such as mesh adaptation, rely on the accurate and inexpensive use of error estimation methods. Adjoint-based error estimation is the most accurate method, and generally the most costly. A strong contributor to this cost is the need ...
An experimental cold-gas study of the response of a choked convergent–divergent nozzle to swirl perturbations is presented. The perturbations were obtained by means of upstream unsteady tangential injections into initially steady flows with different values of steady background s ...
This work presents a transpacific airliner designed for minimal climate impact, incorporating several novel design features. These include open rotor engines, sustainable aviation fuels, natural laminar flow airfoils, and riblets. The design’s configuration and mission have been ...
The underlying physical mechanism of the residual-based large eddy simulation (LES) based on the variational multiscale (VMS) method is clarified. Resolved large-scale energy transportation equation is mathematically derived for turbulent kinetic energy budget analysis. Firstly, ...
Data-driven parameterizations offer considerable potential for improving the fidelity of General Circulation Models. However, ensuring that these remain consistent with the governing equations while still producing stable simulations remains a challenge. In this paper, we propose ...
The downstream acoustic response due to the interaction of main-flow oriented vorticity with a choked nozzle in a swirl-free flow was experimentally demonstrated. The response was obtained by means of impulsive radial air injection in the pipe upstream from the nozzle. The result ...
Proper Orthogonal Decomposition (POD) plays an important role in the analysis of complex nonlinear systems governed by partial differential equations (PDEs), since it can describe the full-order system in a simplified but representative way using a handful of dominant dynamic mod ...

Swirl-Nozzle Interaction Experiments

Influence of Injection-Reservoir Pressure and Injection Time

View Video Presentation: https://doi-org.tudelft.idm.oclc.org/10.2514/6.2021-2286.vid

Quantitative measurements of sound due to swirl-nozzle interaction are presented for the first time. In the experiment a swirl structure was generated by means of tangential injection i ...
Adaptive Mesh Refinement (AMR) is potentially an effective way to automatically generate computational meshes for high-fidelity simulations such as Large Eddy Simulation (LES). When combined with adjoint methods, which are able to localize error contributions, AMR can generate me ...
Adaptive mesh refinement (AMR) is potentially an effective way to automatically generate computational meshes for high-fidelity simulations such as Large Eddy Simulation (LES). Adjoint methods, which are able to localize error contributions, can be used to optimize the mesh for c ...

Swirl–nozzle interaction experiment

Quasi-steady model-based analysis

Measurements of sound due to swirl–nozzle interaction are presented. In the experiment a swirl structure was generated by means of unsteady tangential injection into a steady swirl-free flow upstream from a choked convergent–divergent nozzle. Ingestion of swirl by the choked nozz ...

Sound production due to swirl–nozzle interaction

Model-based analysis of experiments

Indirect noise due to the interaction of flow inhomogeneities with a choked nozzle is an important cause of combustion instability in solid rocket motors and is believed to be important in aircraft engines. A previously published experiment (Kings, N., and Bake, F., “Indirect Com ...
Temporary stratospheric aerosol injection (SAI) using sulphate compounds could help to mitigate some of the adverse and irreversible impacts of global warming. Among the risks and uncertainties of SAI, the development of a delivery system presents an appreciable technical challen ...
To extend the application of the variational multiscale method to ocean engineering, 2D residual-based large eddy simulations of flows around a circular cylinder close to a flat plane have been considered in the present study. A generalized-α method is applied to solving variatio ...

Sound production due to swirl-nozzle interaction

Model-based analysis of experiments

Indirect noise due to the interaction of flow inhomogeneities with a choked nozzle is as an important cause of combustion instability in solid rocket motors and is believed to be important in aircraft engines. A previously published experiment demonstrated that interaction of the ...