NS
N. Samkaharadze
31 records found
1
The electrical characterisation of classical and quantum devices is a critical step in the development cycle of heterogeneous material stacks for semiconductor spin qubits. In the case of silicon, properties such as disorder and energy separation of conduction band valleys are co
...
Micromagnet-based electric dipole spin resonance offers an attractive path for the near-term scaling of dense arrays of silicon spin qubits in gate-defined quantum dots while maintaining long coherence times and high control fidelities. However, accurately controlling dense array
...
As part of the National Agenda for Quantum Technology, QuTech (TU Delft and TNO) has agreed to make quantum technology accessible to society and industry via its full-stack prototype: Quantum Inspire. This system includes two different types of programmable quantum chips: circuit
...
Full-scale quantum computers require the integration of millions of qubits, and the potential of using industrial semiconductor manufacturing to meet this need has driven the development of quantum computing in silicon quantum dots. However, fabrication has so far relied on elect
...
Electron spins in Si/SiGe quantum wells suffer from nearly degenerate conduction band valleys, which compete with the spin degree of freedom in the formation of qubits. Despite attempts to enhance the valley energy splitting deterministically, by engineering a sharp interface, va
...
High-fidelity control of quantum bits is paramount for the reliable execution of quantum algorithms and for achieving fault tolerance—the ability to correct errors faster than they occur1. The central requirement for fault tolerance is expressed in terms of an error th
...
The most promising quantum algorithms require quantum processors that host millions of quantum bits when targeting practical applications1. A key challenge towards large-scale quantum computation is the interconnect complexity. In current solid-state qubit implementati
...
Radio-frequency (rf) reflectometry offers a fast and sensitive method for charge sensing and spin readout in gated quantum dots. We focus in this work on the implementation of rf readout in accumulation-mode gate-defined quantum dots, where the large parasitic capacitance poses a
...
The mission of QuTech is to bring quantum technology to industry and society by translating fundamental scientific research into applied research. To this end we are developing Quantum Inspire (QI), a full-stack quantum computer prototype for future co-development and collaborati
...
Quantum computers (QC), comprising qubits and a classical controller, can provide exponential speed-up in solving certain problems. Among solid-state qubits, transmons and spin-qubits are the most promising, operating « 1K. A qubit can be implemented in a physical system with two
...
Solid-state qubits integrated on semiconductor substrates currently require at least one wire from every qubit to the control electronics, leading to a so-called wiring bottleneck for scaling. Demultiplexing via on-chip circuitry offers an effective strategy to overcome this bott
...
Building a large-scale quantum computer requires the co-optimization of both the quantum bits (qubits) and their control electronics. By operating the CMOS control circuits at cryogenic temperatures (cryo-CMOS), and hence in close proximity to the cryogenic solid-state qubits, a
...
Circuit quantum electrodynamics (QED) employs superconducting microwave resonators as quantum buses. In circuit QED with semiconductor quantum-dot-based qubits, increasing the resonator impedance is desirable as it enhances the coupling to the typically small charge dipole moment
...
Silicon spin qubits are one of the leading platforms for quantum computation1,2. As with any qubit implementation, a crucial requirement is the ability to measure individual quantum states rapidly and with high fidelity. Since the signal from a single electron spin is
...
We demonstrate the strong coupling between a single electron spin in silicon and a single photon in a superconducting microwave cavity. Using the same cavity we perform rapid high-fidelity single-shot readout of two-electron spin states.@en
Author Correction
Rapid gate-based spin read-out in silicon using an on-chip resonator (Nature Nanotechnology, (2019), 14, 8, (742-746), 10.1038/s41565-019-0488-9)
In the version of this Letter originally published, the second, third and fourth exponential terms in equation (3) were incorrect; the corrected equation is shown below. (Formula presented.). The correct equation was used for data analysis. The online versions have been amended.@
...
Quantum computing's value proposition of an exponential speedup in computing power for certain applications has propelled a vast array of research across the globe. While several different physical implementations of devic
...
Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electr
...
In spite of its ubiquity in strongly correlated systems, the competition of paired and nematic ground states remains poorly understood. Recently such a competition was reported in the two-dimensional electron gas at filling factor ν = 5/2. At this filling factor a pressure-induce
...