M.F. Russ
17 records found
1
Hole-based spin qubits in strained planar germanium quantum wells have received considerable attention due to their favorable properties and remarkable experimental progress. The sizeable spin-orbit interaction in this structure allows for efficient qubit operations with electric
...
Quantum links can interconnect qubit registers and are therefore essential in networked quantum computing. Semiconductor quantum dot qubits have seen significant progress in the high-fidelity operation of small qubit registers but establishing a compelling quantum link remains a
...
Qubits that can be efficiently controlled are essential for the development of scalable quantum hardware. Although resonant control is used to execute high-fidelity quantum gates, the scalability is challenged by the integration of high-frequency oscillating signals, qubit cross-
...
We report observations of transitions between excited states in the Jaynes-Cummings ladder of circuit quantum electrodynamics with electron spins (spin circuit QED). We show that unexplained features in recent experimental work correspond to such transitions and present an input-
...
Practical Quantum computing hinges on the ability to control large numbers of qubits with high fidelity. Quantum dots define a promising platform due to their compatibility with semiconductor manufacturing. Moreover, high-fidelity operations above 99.9% have been realized with in
...
Coherent links between qubits separated by tens of micrometers are expected to facilitate scalable quantum computing architectures for spin qubits in electrically defined quantum dots. These links create space for classical on-chip control electronics between qubit arrays, which
...
Semiconductor spin qubits demonstrated single-qubit gates with fidelities up to 99.9 % benchmarked in the single-qubit subspace. However, tomographic characterizations reveal non-negligible crosstalk errors in a larger space. Additionally, it was long thought that the two-qubit g
...
Charge noise in the host semiconductor degrades the performance of spin-qubits and poses an obstacle to control large quantum processors. However, it is challenging to engineer the heterogeneous material stack of gate-defined quantum dots to improve charge noise systematically. H
...
Micromagnet-based electric dipole spin resonance offers an attractive path for the near-term scaling of dense arrays of silicon spin qubits in gate-defined quantum dots while maintaining long coherence times and high control fidelities. However, accurately controlling dense array
...
The fault-tolerant operation of logical qubits is an important requirement for realizing a universal quantum computer. Spin qubits based on quantum dots have great potential to be scaled to large numbers because of their compatibility with standard semiconductor manufacturing. He
...
Spin qubits in quantum dots define an attractive platform for quantum information because of their compatibility with semiconductor manufacturing, their long coherence times, and the ability to operate above one Kelvin. However, despite demonstrations of SWAP oscillations, the in
...
Future quantum computers capable of solving relevant problems will require a large number of qubits that can be operated reliably1. However, the requirements of having a large qubit count and operating with high fidelity are typically conflicting. Spins in semiconductor quantum d
...
High-fidelity control of quantum bits is paramount for the reliable execution of quantum algorithms and for achieving fault tolerance—the ability to correct errors faster than they occur1. The central requirement for fault tolerance is expressed in terms of an error th
...
The prospect of building quantum circuits1,2 using advanced semiconductor manufacturing makes quantum dots an attractive platform for quantum information processing3,4. Extensive studies of various materials have led to demonstrations of two-qubit logic in g
...
Quantum dots fabricated using methods compatible with semiconductor manufacturing are promising for quantum information processing. In order to fully utilize the potential of this platform, scaling quantum dot arrays along two dimensions is a key step. Here, we demonstrate a two-
...
The fundamental concept of light–matter interaction is routinely realized by coupling the quantized electric field in a cavity to the dipole moment of a real or an artificial atom. A recent proposal1,2, motivated by the prospect of overcoming the decohering effects of
...
We investigate hole spin relaxation in the single- and multihole regime in a 2 × 2 germanium quantum dot array. We find spin relaxation times T1 as high as 32 and 1.2 ms for quantum dots with single- and five-hole occupations, respectively, setting benchmarks for spin relaxation
...