SE

121 records found

Context. Modified Newtonian dynamics (MOND) is a promising alternative to dark matter. To further test the theory, there is a need for fluid- and particle-dynamics simulations. The force in MOND is not a direct particle-particle interaction, but derives from a potential for which ...
Rare-Earth oxyhydrides (REH3-2xOx) are characterized by photodarkening when illuminated by photons having an energy exceeding that of the band gap. We propose that the film is segregated in hydrogen rich and hydrogen poor areas. Upon illumination, the excited electrons reduce the ...
Cycling stability of the photochromic effect in rare-earth oxyhydride thin films is of great importance for long-term applications such as smart windows. However, an increasingly slower bleaching rate upon photochromic cycling was found in yttrium oxyhydride thin films; the origi ...
Recently, the all-d-metal Ni(Co)MnTi based Heusler compounds are found to have a giant magnetocaloric effect (GMCE) near room temperature and manifest different functionalities like multicaloric effects, which can be employed for solid-state refrigeration. However, in comparison ...

Exploring Multi-Anion Chemistry in Yttrium Oxyhydrides

Solid-State NMR Studies and DFT Calculations

Rare earth oxyhydrides REOxH(3-2x), with RE = Y, Sc, or Gd and a cationic FCC lattice, are reversibly photochromic in nature. It is known that structural details and anion (O2-:H-) composition dictate the efficiency of the photochromic ...
Rare-earth (RE) oxyhydride thin films show a color-neutral, reversible photochromic effect at ambient conditions. The origin of the photochromism is the topic of current investigations. Here, we investigated the lattice defects, electronic structure, and crystal structure of phot ...
In this paper, we investigate by ab initio DFT how the O:H ratio influences the formation and lattice energy, metastability, and optical properties of Y and La anion-disordered ROxH3-2x oxyhydrides. To achieve this, a set of special quasirandom structures (SQS) is introduced to m ...
To develop an understanding of the photochromic effect in rare-earth metal oxyhydride thin films (REH3-2xOx, here RE = Y), we explore the aliovalent doping of the RE cation. We prepared Ca-doped yttrium oxyhydride thin films ((CazY1-z)HxOy) by reactive magnetron cosputtering with ...
Reduction-oxidation (redox) reactions that transfer conduction electrons from the anode to the cathode are the fundamental processes responsible for generating power in Li-ion batteries. Electronic and microstructural features of the cathode material are controlled by the nature ...

Erratum to

Aliovalent Calcium Doping of Yttrium Oxyhydride Thin Films and Implications for Photochromism (The Journal of Physical Chemistry C (2022) 126:34 (14742−14749) DOI:10.1021/acs.jpcc.2c04456)

The energy axes of the RBS and ERD data (contained in Figures 2a,b,d,e, and S4) were originally underestimated, and the corrected figures appear below and in the Supporting Information. The change is in the conversion from raw data to the energy scale, which was initially convert ...
Thin films of rare-earth metal oxyhydrides, such as yttrium oxyhydrides (YH3-2xOx), show a photochromic effect where the transparency of the films decreases reversibly upon exposure to UV light. However, the exact mechanism behind this effect is unknown. In this paper, we describ ...
Rare-earth oxyhydride REOxH3-2x thin films prepared by air-oxidation of reactively sputtered REH2 dihydrides show a color-neutral, reversible photochromic effect at ambient conditions. The present work shows that the O/H anion ratio, as well as the choice of the cation, allow to ...
In high-efficiency silicon solar cells featuring carrier-selective passivating contacts based on ultrathin SiOx/poly-Si, the appropriate implementation of transparent conductive oxide (TCO) layers is of vital importance. Considerable deterioration in passivation quality occurs fo ...
Doppler broadening positron annihilation spectroscopy depth profiles were collected on photochromic YOxHy thin films. In situ UV illumination of photochromic semiconductor YOxHy films leads to an increase in S-parameter and a large redu ...
A new method is developed to produce mesoporous titania thin films at room temperature using the enzyme papain in a dip-coating procedure, providing low-cost titania films in a sustainable manner. Quartz crystal microbalance, positron annihilation Doppler broadening and lifetime ...
Barium di-silicide (BaSi2) is a very promising absorber material for high-efficiency thin-film solar cells, due to its suitable bandgap, high light absorption coefficient, and long minority-carrier lifetime. In this study, we compare the nanostructure, layer compositio ...
The degradation of hybrid perovskite films when exposed to ambient air is a major challenge for the development of perovskite-based photovoltaics at large scale. At present, little is known about the environmental degradat ...
Positron annihilation lifetime spectroscopy (PALS) and Doppler broadening positron annihilation spectroscopy (DB-PAS) depth profiling demonstrate pronounced growth of vacancy clusters at the grain boundaries of as-deposited Al-doped ZnO films deposited as transparent conductive o ...

Positron Annihilation Studies on the Damp Heat Degradation of ZnO

Al Transparent Conductive Oxide Layers for CIGS Solar Cells

Positron annihilation depth-profiling is used as an innovative tool to monitor the evolution of vacancy defects in two series of ZnO:Al transparent conductive oxide (TCO) layers for Cu(In,Ga)Se2 (CIGS) solar cells under accelerated degradation at 85??C/85% relative humidity. The ...
Previous studies have shown that positron-annihilation spectroscopy is a highly sensitive probe of the electronic structure and surface composition of ligand-capped semiconductor quantum dots (QDs) embedded in thin films. The nature of the associated positron state, however, whet ...