PV

227 records found

Thermosphere mass density and crosswind can be derived from accelerometer and GNSS tracking data. However, present datasets are often provided without comprehensive uncertainty specifications. We present a newly developed method that propagates measurement noise and errors in the ...
This study presents the first azimuth cutoff analysis in Synthetic Aperture Radar (SAR) altimetry, aiming to assess its applicability in characterizing sea-state dynamics. In SAR imaging, the azimuth cutoff serves as a proxy for the shortest waves, in terms of wavelength, that ca ...
In the coming decade, JUICE and Europa Clipper radio-science will yield the most accurate estimation to date of the Galilean moons’ physical parameters and ephemerides. JUICE's PRIDE (Planetary Radio Interferometry and Doppler Experiment) will help achieve such a solution by prov ...
The problem of how to solar sail around planets remains nearly unexplored. Most of the existing body of knowledge focuses on scape trajectories or locally optimal controls, not providing much insight into the inherent physical characteristics of the transfer problem. In this work ...
Solar sailing is a propulsion method that takes advantage of solar radiation pressure to generate thrust. Although most of near-future solar-sail missions will fly in low Earth orbit, where planetary radiation pressure can be as large as 20% of solar radiation pressure, studies o ...
Uncertainties in radiation pressure modelling play a significant role in the thermospheric density and crosswind observations derived from the GRACE-FO accelerometer, especially during low solar activity. Under such conditions, the radiation pressure acceleration matches the magn ...
NASA’s ACS3 mission will be the first Earth-bound solar-sail mission to fly so-called calibration steering laws. These steering laws are designed to expose the sailcraft to a variety of dynamical conditions to isolate the effects of different parameters on the dynamics, thereby f ...
Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a multi-purpose experimental technique aimed at enhancing the science return of planetary missions. The technique exploits the science payload and spacecraft service systems without requiring a dedicated onboard ins ...
Solar sailing is a propellantless propulsion method that exploits solar radiation pressure to generate thrust. In recent years, several solar sails have been launched into Earth-bound orbit to demonstrate this technology’s potential. Because planetary radiation pressure can reach ...
This paper aims to investigate the capabilities of exploiting optical line-of-sight navigation using star trackers. First, a synthetic image simulator is developed to generate realistic images, which is later exploited to test the star tracker's performance. Then, generic conside ...
We present new neutral mass density and crosswind observations for the CHAMP, GRACE, and GRACE-FO missions, filling the last gaps in our database of accelerometer-derived thermosphere observations. For consistency, we processed the data over the entire lifetime of these missions, ...
In this paper we review the precision orbit determination (POD) performance of the CryoSat-2 mission where we used all tracking data between June-2010 and Jan-2023; with station and beacon coordinates provided in the ITRF2020 reference system, we use a mean gravity model, and we ...

Daedalus MASE (mission assessment through simulation exercise)

A toolset for analysis of in situ missions and for processing global circulation model outputs in the lower thermosphere-ionosphere

Daedalus MASE (Mission Assessment through Simulation Exercise) is an open-source package of scientific analysis tools aimed at research in the Lower Thermosphere-Ionosphere (LTI). It was created with the purpose to assess the performance and demonstrate closure of the mission obj ...
ESA’s Earth explorer mission CryoSat-2 has an ice-monitoring objective, but it has proven to also be a valuable source of observations for measuring impacts of climate change over oceans. In this paper, we report on our long-term ocean data analysis and validation and give our fi ...
This manuscript aims to present and evaluate the applicability of combining optical line-of-sight (LoS) navigation with crosslink radiometric navigation for deep-space cruising distributed space systems. To do so, a set of four distributed space systems architectures is presented ...
The Faculty of Aerospace Engineering is one of eight faculties at Delft University of Technology. It is one of the most comprehensive academic and innovation communities worldwide focusing on aerospace engineering. Its 120 professors and 70 researchers are mentoring and teaching ...

A Tsunami Generated by a Strike-Slip Event

Constraints From GPS and SAR Data on the 2018 Palu Earthquake

A devastating tsunami struck Palu Bay in the wake of the 28 September 2018 Mw = 7.5 Palu earthquake (Sulawesi, Indonesia). With a predominantly strike-slip mechanism, the question remains whether this unexpected tsunami was generated by the earthquake itself, or rather ...

MICROSCOPE Mission

Final Results of the Test of the Equivalence Principle

The MICROSCOPE mission was designed to test the weak equivalence principle (WEP), stating the equality between the inertial and the gravitational masses, with a precision of 10-15 in terms of the Eötvös ratio η. Its experimental test consisted of comparing the accelerations under ...
This article shows the first spectral analysis of fully-focused Synthetic Aperture Radar (FFSAR) altimetry data with the objective of studying backscatter modulations caused by swells. Swell waves distort the backscatter in altimetry radargrams by means of velocity and range bunc ...
When reconstructing natural satellites' ephemerides from space missions' tracking data, the dynamics of the spacecraft and natural bodies are often solved for separately, in a decoupled manner. Alternatively, the ephemeris generation and spacecraft orbit determination can be perf ...