PS

P. Segovia Castillo

14 records found

This article presents the design of a control strategy for the Calais canal, a navigation canal located in a lowland area in northern France that is affected by tides. Moreover, the available actuators are discrete-valued and the hierarchy of operational objectives is time-varyin ...
This paper presents the design of a model predictive control (MPC) for the Calais canal, located in the north of France for satisfactory management of the system. To estimate the unknown inputs/outputs arising from the uncontrolled pumps, a digital twin (DT) in the framework of a ...
This paper presents the design of a model predictive scheduling strategy to address the inland waterborne transport (IWT) problem considering bridges that must open to enable vessel passage. The main contribution is the formulation of a control-oriented model of the problem, incl ...
Model Predictive Control (MPC) has recently gained increasing interest in the adaptive management of water resources systems due to its capability of incorporating disturbance forecasts into real-time optimal control problems. Yet, related literature is scattered with heterogeneo ...
This paper presents a switched linear system representation of water canal dynamics to incorporate different operating modes, which arise due to the occurrence of extreme weather phenomena such as flooding and drought episodes. To guarantee the stability during mode switching, a ...
This paper proposes a combined control and state estimation strategy for inland waterways, aiming at simultaneously attaining the optimal water level management and maximizing hydroelectricity generation. The latter can be realized by turbines installed in canal locks that harnes ...
This paper considers the inland waterborne transport (IWT) problem, and presents a scheduling approach for inland vessels and locks to generate optimal vessel and lock timetables. The scheduling strategy is designed in the switching max-plus-linear (SMPL) systems framework, as th ...
Model predictive control (MPC) has been widely employed to control a large variety of water systems, such as dams, irrigation canals, inland waterways, drinking water networks and wastewater treatment plants. Its predictive capabilities and the possibility to incorporate constrai ...
This work presents the design of a combined control and state estimation approach to simultaneously maintain optimal water levels and maximize hydroelectricity generation in inland waterways using gates and ON/OFF pumps. The latter objective can be achieved by installing turbines ...
This paper presents an adaptive approximation-based scheme for learning a partially known ship power propulsion plant under various environmental conditions. Considering the effect of water depth on the engine power, a dynamic model is defined comprised of the engine dynamics and ...
This paper addresses the problem of guaranteeing efficient inland waterway transport in the presence of sequential movable bridges, which must be operated to grant vessel passage. The main contribution is the formulation of the vessel passage scheduling problem as a mixedinteger ...
This work is concerned with the design of a two-step distributed state estimation scheme for large-scale systems in the presence of unknown-but-bounded disturbances and noise. The set-membership approach is employed to construct a compact set containing the states consistent with ...
The maritime industry is actively exploring alternative fuels and drive train technology to reduce the emissions of hazardous air pollutants and greenhouse gases. High temperature solid oxide fuel cells (SOFCs) represent a promising technology to generate electric power on ships ...
This work presents the design of a hierarchical control and state estimation approach for the optimal water level management of open-channel systems using gates and pumping stations as actuators. Each reach may be characterized by a different time delay and a different prioritiza ...