FG

F. Grazian

24 records found

The pursuit of battery charging technology for electric vehicle (EV) has led to extensive research on the inductive-based wireless power transfer (WPT) systems. In this paper, the compensation component (including coils) stresses will be studied in two commonly adopted compensati ...
This article presents a parameter recognition-based impedance tuning method for the impedance mismatch caused by capacitance drift and coil misalignment in series-series-compensated wireless power transfer (WPT) systems. First, a parameter recognition method is proposed to identi ...

Highly Efficient Inductive Power Transfer

Variable Compensation for Misalignment Tolerance and Voltage/Current Doubler for Battery Interoperability

Wireless charging has the potential to speed up the transition to electric vehicles (EVs) because it is intrinsically a user-friendly technology. Furthermore, it is essential when charging completely autonomous EVs, and it enables the charging of EVs in motion without using overh ...
Light-duty electric vehicles (EVs) typically have a rated voltage of either 400 or 800 V. Especially when considering public parking infrastructures or owners with multiple EVs, e.g., car rental companies, EV wireless chargers must efficiently deliver electric power to both batte ...
The lithium-ion battery of an electric vehicle (EV) is typically rated at either 400 or 800 V. When considering public parking infrastructures, EV wireless chargers must efficiently deliver electric power to both battery options. This can be normally achieved by regulating the ou ...
This paper investigates the interoperability of the proposed voltage/current doubler (V/I-D) converter used for wireless charging of electric vehicles (EVs), which achieves high efficiency when charging both 400V and 800V batteries at the same power. Nominally, the V/I-D converte ...
Due to the urgent desire for a fast, convenient, and efficient battery charging technology for electric vehicle (EV) users, extensive research has been conducted into the design of high-power inductive power transfer (IPT) systems. However, there are few studies that formulate th ...
Wireless charging must be highly efficient throughout the entire battery charging profile to compete in the electric vehicle (EV) industry. Thus, optimum load matching is commonly used: it operates at the equivalent load that maximizes the efficiency, which depends on the coil's ...
When considering EV wireless charging that uses inductive power transfer with magnetic resonance, the coils’ current distortion must be minimized to guarantee compliance with the electromagnetic compatibility limits on the radiated magnetic field set by the relevant industrial st ...
Nowadays, inductive power transfer (IPT) with magnetic resonance is the most used method for high-power wireless battery charging applications. Once the topology of the compensation network and the operating frequency are selected, there are infinite combinations of the circuit e ...
The increase in popularity of electric vehicles (EVs) and the pursuit of user convenience makes wireless power transfer (WPT) an attractive technology for the charging of batteries. The usage of WPT in e-transportation is not straightforward because the current standardization li ...
This paper aims to investigate the dynamic charging performance of an 11 kW dynamic inductive power transfer (DIPT) system. First, a multi-objective optimization (MOO) method is proposed to find the Pareto front of the DD charging pad. Then, the optimal design with a 96.82% effic ...
In wireless charging systems, the H-bridge converter's switching frequency is set close to the system's natural resonance for achieving optimized zero voltage switching (ZVS). Variations to the system's natural resonance are commonly tracked by following the changes in the resona ...
Industrial wireless charging systems use standardized coils to guarantee interoperability between different manufacturers. In combination with these coils, the compensation network can still be designed and optimized. This paper explains the step-by-step design of the compensatio ...
This paper proposes a new method of electric vehicles detection (EVD) and foreign objects detection (FOD) for dynamic inductive power transfer (DIPT) systems. The proposed detection method applies both passive coil sets (PCSs) and active coil sets (ACSs) to achieve both EVD and F ...
In high-power wireless battery charging that uses inductive power transfer, a considerable amount of power losses are located in the transmitter and receiver coils because they carry high resonant currents and typically have a loose coupling between them which increases eddy curr ...
In inductive power transfer applications that use resonant compensation networks, the commonly employed H-bridge inverter should be kept operating in soft-switching to ensure high power efficiency and low irradiated electromagnetic noise. To achieve so, the zero-crossing detectio ...
If electric vehicles have to be truly sustainable, it is essential to charge them from sustainable sources of electricity, such as solar or wind energy. In this paper, the design of solar powered e-bike charging station that provides AC, DC and wireless charging of e-bikes is inv ...
This paper aims to investigate the radiated magnetic field by 11 kW inductive power transfer (IPT) systems used for the charging of electric vehicles. Two reference designs suggested by SAE J2954 are studied. Both designs are analysed to obtain the coils winding currents, and 3D ...