PS
Peter Schall
11 records found
1
New Theoretical Model to Describe Carrier Multiplication in Semiconductors
Explanation of Disparate Efficiency in MoTe2 versus PbS and PbSe
We present a theoretical model to compute the efficiency of the generation of two or more electron-hole pairs in a semiconductor by the absorption of one photon via the process of carrier multiplication (CM). The photogeneration quantum yield of electron-hole pairs is calculated
...
Heterostructures (HSs) based on two-dimensional transition metal dichalcogenides (TMDCs) are highly intriguing materials because of the layers’ pronounced excitonic properties and their nontrivial contributions to the HS. These HSs exhibit unique properties that are not observed
...
Rhenium disulfide, a member of the transition metal dichalcogenide family of semiconducting materials, is unique among 2D van der Waals materials due to its anisotropy and, albeit weak, interlayer interactions, confining excitons within single atomic layers and leading to monolay
...
Creating materials with structure that is independently controllable at a range of scales requires breaking naturally occurring hierarchies. Breaking these hierarchies can be achieved via the decoupling of building block attributes from structure during assembly. Here, we demonst
...
Understanding the relationship between colloidal building block shape and self-assembled material structure is important for the development of novel materials by self-assembly. In this regard, colloidal superballs are unique building blocks because their shape can smoothly trans
...
In conventional solar cell semiconductor materials (predominantlySi)photons with energy higher than the band gap initially generate hot electrons and holes, which subsequently cool down to the band edge by phonon emission. Due to the latter process,the energy of
...
Manipulating the way in which colloidal particles self-organize is a central challenge in the design of functional soft materials. Meeting this challenge requires the use of building blocks that interact with one another in a highly specific manner. Their fabrication, however, is
...
Assembled perovskite nanocrystals (NCs), known as supercrystals (SCs), can have many exotic optical and electronic properties different from the individual NCs due to energy transfer and electronic coupling in the dense superstructures. We investigate the optical properties and u
...
We studied the nature of excitons in the transition metal dichalcogenide alloy Mo0.6W0.4S2 compared to pure MoS2 and WS2 grown by atomic layer deposition (ALD). For this, optical absorption/transmission spectroscopy and time-dependent density functional theory (TDDFT) were used.
...
The assembly of colloidal quantum dots (QDs) into dense superstructures holds great promise for the development of novel optoelectronic devices. Several assembly techniques have been explored; however, achieving direct and precise control over the interparticle potential that con
...
Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge
...