MS

M. Siskins

24 records found

Heat transport by acoustic phonons in two-dimensional (2D) materials is fundamentally different from that in 3D crystals because the out-of-plane phonons propagate in a unique way that strongly depends on tension and bending rigidity. Here, using optomechanical techniques, we exp ...
The temperature dependent order parameter provides important information on the nature of magnetism. Using traditional methods to study this parameter in two-dimensional (2D) magnets remains difficult, however, particularly for insulating antiferromagnetic (AF) compounds. Here, w ...
The temperature dependent order parameter provides important information on the nature of magnetism. Using traditional methods to study this parameter in two-dimensional (2D) magnets remains difficult, however, particularly for insulating antiferromagnetic (AF) compounds. We show ...
CoPS3 stands out in the family of the van der Waals antiferromagnets XPS3 (X = Mn, Ni, Fe, and Co) due to the unquenched orbital momentum of the magnetic Co2+ ions, which is known to facilitate the coupling of spins to both electromagnetic waves a ...
In van der Waals (vdW) materials, the electron mean free path (MFP) is largely influenced by the discrete states in the unoccupied band structure. So far, the influence of these states has only been measured in graphene, while all measurements on other vdW materials lack energy r ...
Magnetostrictive coupling has recently attracted interest as a sensitive method for studying magnetism in two-dimensional (2D) materials by mechanical means. However, its application in high-frequency magnetic actuators and transducers requires rapid modulation of the magnetic or ...
Antiferromagnetic materials feature intrinsic ultrafast spin dynamics, making them ideal candidates for future magnonic devices operating at THz frequencies. A major focus of current research is the investigation of optical methods for the efficient generation of coherent magnons ...
Two-dimensional magnetic materials with strong magnetostriction are attractive systems for realizing strain-tuning of the magnetization in spintronic and nanomagnetic devices. This requires an understanding of the magneto-mechanical coupling in these materials. In this work, we s ...
Suspended piezoelectric thin films are key elements enabling high-frequency filtering in telecommunication devices. To meet the requirements of next-generation electronics, it is essential to reduce device thickness for reaching higher resonance frequencies. Here, the high-qualit ...
Through rational chemical design, and thanks to the hybrid nature of metal-organic frameworks (MOFs), it is possible to prepare molecule-based 2D magnetic materials stable at ambient conditions. Here, we illustrate the versatility of this approach by changing both the metallic no ...
Coupled nanomechanical resonators made of two-dimensional materials are promising for processing information with mechanical modes. However, the challenge for these systems is to control the coupling. Here, we demonstrate strong coupling of motion between two suspended membranes ...
This thesis studies higher-order material properties* and effects in van der Waals crystals, such as anisotropic Young’s modulus, magnetostriction, and non-trivial thermal expansion effects near magnetic and electronic phase transitions, that can affect the nanomechanical motion ...
The charge density wave (CDW) state in van der Waals systems shows interesting scaling phenomena as the number of layers can significantly affect the CDW transition temperature, TCDW. However, it is often difficult to use conventional methods to study the phase transit ...
Van der Waals magnets provide an ideal playground to explore the fundamentals of low-dimensional magnetism and open opportunities for ultrathin spin-processing devices. The Mermin-Wagner theorem dictates that as in reduced dimensions isotropic spin interactions cannot retain long ...
Oxide heterointerfaces constitute a rich platform for realizing novel functionalities in condensed matter. A key aspect is the strong link between structural and electronic properties, which can be modified by interfacing materials with distinct lattice symmetries. Here, we deter ...
The reduced dimensionality of two-dimensional (2D) materials results in characteristic types of magnetically and electronically ordered phases. However, only few methods are available to study this order, in particular in ultrathin insulating antiferromagnets that couple weakly t ...
Complex oxide thin films and heterostructures exhibit a variety of electronic phases, often controlled by the mechanical coupling between film and substrate. Recently it has become possible to isolate epitaxially grown single-crystalline layers of these materials, enabling the st ...
The high flexibility, impermeability and strength of graphene membranes are key properties that can enable the next generation of nanomechanical sensors. However, for capacitive pressure sensors, the sensitivity offered by a single suspended graphene membrane is too small to comp ...
Porous, atomically thin graphene membranes have interesting properties for filtration and sieving applications. Here, graphene membranes are used to pump gases through nanopores using optothermal forces, enabling the study of gas flow through nanopores at frequencies above 100 kH ...
Despite theoretical predictions that graphene should be impermeable to all gases, practical experiments on sealed graphene nanodrums show small leak rates. Thus far, the exact mechanism for this permeation has remained unclear, because different potential leakage pathways have no ...