YB
Y.M. Blanter
120 records found
1
We propose a hybrid quantum system consisting of a magnetic particle inductively coupled to two superconducting transmon qubits, where qubit-qubit interactions are mediated via magnons. We show that the system can be tuned into three different regimes of effective qubit-qubit int
...
The shot noise in tunneling experiments reflects the Poissonian nature of the tunneling process. The shot-noise power is proportional to both the magnitude of the current and the effective charge of the carrier. Shot-noise spectroscopy thus enables us, in principle, to determine
...
Surface plasmons in two-dimensional (2D) electron systems have attracted great attention for their promising light-matter applications. However, the excitation of a surface plasmon, in particular, transverse-electric (TE) surface plasmon, remains an outstanding challenge due to t
...
The recent discovery of cable bacteria has greatly expanded the known length scale of biological electron transport, as these multi-cellular bacteria are capable of mediating electrical currents across centimeter-scale distances. To enable such long-range conduction, cable bacter
...
Superconductors are materials with zero electrical resistivity and the ability to expel magnetic fields, which is known as the Meissner effect. Their dissipationless diamagnetic response is central to magnetic levitation and circuits such as quantum interference devices. In this
...
We theoretically predict and experimentally observe the onset of weak-link physics in the dynamical response of transition-edge sensors (TESs). We develop a theoretical framework based on a Fokker-Planck description that incorporates both the TESs electrical response, stemming fr
...
Quantum sensing has developed into a main branch of quantum science and technology. It aims at measuring physical quantities with high resolution, sensitivity, and dynamic range. Electron spins in diamond are powerful magnetic field sensors, but their sensitivity in the microwave
...
Optical photons are ideal carriers for long-distance transmission, while state-of-the-art quantum processors, such as supercon-ducting qubits, operate at microwave frequencies. An important requirement for networked quantum computation is therefore the ability to coherently conve
...
The temperature dependent order parameter provides important information on the nature of magnetism. Using traditional methods to study this parameter in two-dimensional (2D) magnets remains difficult, however, particularly for insulating antiferromagnetic (AF) compounds. Here, w
...
We propose a scheme for generating and controlling entangled coherent states (ECSs) of magnons, i.e., the quanta of the collective spin excitations in magnetic systems, or phonons in mechanical resonators. The proposed hybrid circuit architecture comprises a superconducting trans
...
The temperature dependent order parameter provides important information on the nature of magnetism. Using traditional methods to study this parameter in two-dimensional (2D) magnets remains difficult, however, particularly for insulating antiferromagnetic (AF) compounds. We show
...
Magnetostrictive coupling has recently attracted interest as a sensitive method for studying magnetism in two-dimensional (2D) materials by mechanical means. However, its application in high-frequency magnetic actuators and transducers requires rapid modulation of the magnetic or
...
We discuss spin-wave transport in anisotropic ferromagnets with an emphasis on the zeros of the band edges as a function of a magnetic field. An associated divergence of the magnon spin should be observable by enhanced magnon conductivities in nonlocal configurations, especially
...
Magnonics addresses the physical properties of spin waves and utilizes them for data processing. Scalability down to atomic dimensions, operation in the GHz-to-THz frequency range, utilization of nonlinear and nonreciprocal phenomena, and compatibility with CMOS are just a few of
...
We propose to directly and quantum-coherently couple a superconducting transmon qubit to magnons - the quanta of the collective spin excitations, in a nearby magnetic particle. The magnet's stray field couples to the qubit via a superconducting quantum interference device. We pre
...
Sideband asymmetry in cavity optomechanics has been explained by particle creation and annihilation processes, which bestow an amplitude proportional to 'n+1' and 'n' excitations to each of the respective sidebands. We discuss the issues with this as well as other interpretations
...
Atomically engineered artificial lattices are a useful tool for simulating complex quantum phenomena, but have so far been limited to the study of Hamiltonians where electron-electron interactions do not play a role. However, it is precisely the regime in which these interactions
...
Cavity magnonics deals with the interaction of magnons — elementary excitations in magnetic materials — and confined electromagnetic fields. We introduce the basic physics and review the experimental and theoretical progress of this young field that is gearing up for integration
...
Compared to monolayer graphene, electrons in Bernal-stacked bilayer graphene (BLG) have an additional layer degree of freedom, offering a platform for developing layered spintronics with the help of proximity-induced magnetism. Based on an effective phenomenological model, we sys
...
We propose a spin valve that is based on van der Waals antiferromagnetism and is fully electrically controlled. The device is composed of two antiferromagnetic terminals that allow for vertical bias control and a linked central scattering potential region. The magnetoresistance v
...