JD

39 records found

Mutualistic networks, such as plant–pollinator networks, have attracted increasing attention in the ecological literature in the last decades, not only because of their fascinating natural history, but also because mutualistic interactions have been shown to play a key role in th ...

Stackelberg evolutionary game theory

How to manage evolving systems

Stackelberg evolutionary game (SEG) theory combines classical and evolutionary game theory to frame interactions between a rational leader and evolving followers. In some of these interactions, the leader wants to preserve the evolving system (e.g. fisheries management), while in ...
This paper develops and analyzes a Markov chain model for the treatment of cancer. Cancer therapy is modeled as the patient's Markov Decision Problem, with the objective of maximizing the patient's discounted expected quality of life years. Patients make decisions on the duration ...

Fisheries management as a Stackelberg Evolutionary Game

Finding an evolutionarily enlightened strategy

Fish populations subject to heavy exploitation are expected to evolve over time smaller average body sizes. We introduce Stackelberg evolutionary game theory to show how fisheries management should be adjusted to mitigate the potential negative effects of such evolutionary change ...
The power system is one of the most complicated man-made non-linear systems which plays an important role for human being since it was first made in the 19th century. In the past decade, the integration of renewable power sources such as wind energy and solar energy has increased ...
The linear relation between Kemeny's constant, a graph metric directly linked with random walks, and the effective graph resistance in a regular graph has been an incentive to calculate Kemeny's constant for various networks. In this paper we consider complete bipartite graphs, ( ...
In the classical susceptible-infected-susceptible (SIS) model, a disease or infection spreads over a given, mostly fixed graph. However, in many real complex networks, the topology of the underlying graph can change due to the influence of the dynamical process. In this paper, be ...
In this paper, we focus on option pricing models based on time-fractional diffusion with generalized Hilfer-Prabhakar derivative. It is demonstrated how the option is priced for fractional cases of European vanilla option pricing models. Series representations of the pricing form ...
We study generalized diffusion-wave equation in which the second order time derivative is replaced by an integro-differential operator. It yields time fractional and distributed order time fractional diffusion-wave equations as particular cases. We consider different memory kerne ...
This paper presents a parameter estimation method to determine the linear behavior of an object constructed of thin plates. Based on the magnetostatic field equations, an integral equation is derived that fully determines the induced magnetization, whenever the spatial magnetic s ...
In machine vision typical heuristic methods to extract parameterized objects out of raw data points are the Hough transform and RANSAC. Bayesian models carry the promise to optimally extract such parameterized objects given a correct definition of the model and the type of noise ...
The traditional secondary frequency control of power systems restores nominal frequency by steering Area Control Errors (ACEs) to zero. Existing methods are a form of integral control with the characteristic that large control gain coefficients introduce an overshoot and small on ...

Synchronization of Cyclic Power Grids

Equilibria and Stability of the Synchronous State

Synchronization is essential for the proper functioning of power grids, we investigate the synchronous states
and their stability for cyclic power grids. We calculate the number of stable equilibria and investigate both the linear and nonlinear stability of the synchronous st ...
Kemeny's constant and its relation to the effective graph resistance has been established for regular graphs by Palacios et al. [1]. Based on the Moore–Penrose pseudo-inverse of the Laplacian matrix, we derive a new closed-form formula and deduce upper and lower bounds for the Ke ...
Line detection is a fundamental problem in the world of computer vision. Many sophisticated methods have been proposed for performing inference over multiple lines; however, they are quite ad-hoc. Our fully Bayesian model extends a linear Bayesian regression model to an infinite ...
To balance the power supply and demand with optimized control cost and nominal synchronized frequency, we propose a secondary frequency control approach, named Power-Imbalance Allocation Control (PIAC), for power systems with lossless networks, consisting of synchronous machines, ...

Nonparametric Bayesian Line Detection

Towards Proper Priors for Robotic Computer Vision

In computer vision there are many sophisticated methods to perform inference over multiple lines, however they are quite ad-hoc. In this paper a fully Bayesian approach is used to fit multiple lines to a point cloud simultaneously. Our model extends a linear Bayesian regression m ...
In computer and robotic vision point clouds from depth sensors have to be processed to form higher-level concepts such as lines, planes, and objects. Bayesian methods formulate precisely prior knowledge with respect to the noise and likelihood of points given a line, plane, or ob ...