Triadic Split-Merge Sampler

More Info
expand_more

Abstract

In machine vision typical heuristic methods to extract parameterized objects out of raw data points are the Hough transform and RANSAC. Bayesian models carry the promise to optimally extract such parameterized objects given a correct definition of the model and the type of noise at hand. A category of solvers for Bayesian models are Markov chain Monte Carlo methods. Naive implementations of MCMC methods suffer from slow convergence in machine vision due to the complexity of the parameter space. Towards this blocked Gibbs and split-merge samplers have been developed that assign multiple data points to clusters at once. In this paper we introduce a new split-merge sampler, the triadic split-merge sampler, that perform steps between two and three randomly chosen clusters. This has two advantages. First, it reduces the asymmetry between the split and merge steps. Second, it is able to propose a new cluster that is composed out of data points from two different clusters. Both advantages speed up convergence which we demonstrate on a line extraction problem. We show that the triadic split-merge sampler outperforms the conventional split-merge sampler. Although this new MCMC sampler is demonstrated in this machine vision context, its application extend to the very general domain of statistical inference.

Files

1069623.pdf
(pdf | 0.927 Mb)
Unknown license

Download not available