Klazina Kooiman
32 records found
1
Understanding and controlling the ultrasound contrast agent (UCA)'s response to an applied ultrasound pressure field are crucial when investigating ultrasound imaging sequences and therapeutic applications. The magnitude and frequency of the applied ultrasonic pressure waves affect the oscillatory response of the UCA. Therefore, it is important to have an ultrasound compatible and optically transparent chamber in which the acoustic response of the UCA can be studied. The aim of our study was to determine the in situ ultrasound pressure amplitude in the ibidi μ -slide I Luer channel, an optically transparent chamber suitable for cell culture, including culture under flow, for all microchannel heights (200, 400, 600, and 800 μm). First, the in situ pressure field in the 800- μm high channel was experimentally characterized using Brandaris 128 ultrahigh-speed camera recordings of microbubbles (MBs) and a subsequent iterative processing method, upon insonification at 2 MHz, 45° incident angle, and 50-kPa peak negative pressure (PNP). Control studies in another cell culture chamber, the CLINIcell, were compared with the obtained results. The pressure amplitude was -3.7 dB with respect to the pressure field without the ibidi μ -slide. Second, using finite-element analysis, we determined the in situ pressure amplitude in the ibidi with the 800- μm channel (33.1 kPa), which was comparable to the experimental value (34 kPa). The simulations were extended to the other ibidi channel heights (200, 400, and 600 μm) with either 35° or 45° incident angle, and at 1 and 2 MHz. The predicted in situ ultrasound pressure fields were between -8.7 and -1.1 dB of the incident pressure field depending on the listed configurations of ibidi slides with different channel heights, applied ultrasound frequencies, and incident angles. In conclusion, the determined ultrasound in situ pressures demonstrate the acoustic compatibility of the ibidi μ -slide I Luer for different channel heights, thereby showing its potential for studying the acoustic behavior of UCAs for imaging and therapy.
@enUltrasound contrast-mediated medical imaging and therapy both rely on the dynamics of micron- and nanometer-sized ultrasound cavitation nuclei, such as phospholipid-coated microbubbles and phase-change droplets. Ultrasound cavitation nuclei respond non-linearly to ultrasound on a nanosecond time scale that necessitates the use of ultra-high-speed imaging to fully visualize these dynamics in detail. In this study, we developed an ultra-high-speed optical imaging system that can record up to 20 million frames per second (Mfps) by coupling two small-sized, commercially available, 10-Mfps cameras. The timing and reliability of the interleaved cameras needed to achieve 20 Mfps was validated using two synchronized light-emitting diode strobe lights. Once verified, ultrasound-activated microbubble responses were recorded and analyzed. A unique characteristic of this coupled system is its ability to be reconfigured to provide orthogonal observations at 10 Mfps. Acoustic droplet vaporization was imaged from two orthogonal views, by which the 3-D dynamics of the phase transition could be visualized. This optical imaging system provides the temporal resolution and experimental flexibility needed to further elucidate the dynamics of ultrasound cavitation nuclei to potentiate the clinical translation of ultrasound-mediated imaging and therapy developments.
@enAcute normovolemic hemodilution (ANH) is associated with low oxygen carrying capacity of blood and purposed to cause renal injury in perioperative setting. It is best accomplished in a perioperative setting by a colloid such as hydroxyl ethyl starch (HES) due its capacity to fill the vascular compartment and maintain colloidal pressure. However, alterations of intra renal microvascular perfusion, flow and its effects on renal function and damage during ANH has not been sufficiently clarified. Based on the extensive use of HES in the perioperative setting we tested the hypothesis that the use of HES during ANH is able to perfuse the kidney microcirculation adequately without causing renal dysfunction and injury in pigs. Hemodilution (n = 8) was performed by stepwise replacing blood with HES to hematocrit (Hct) levels of 20% (T1), 15% (T2), and 10% (T3). Seven control animals were investigated. Systemic and renal hemodynamics were monitored. Renal microcirculatory perfusion was visualized and quantified using contrast-enhanced ultrasound (CEUS) and laser speckle imaging (LSI). In addition, sublingual microcirculation was measured by handheld vital microscopy (HVM). Intrarenal mean transit time of ultrasound contrast agent (IRMTT-CEUS) was reduced in the renal cortex at Hct 10% in comparison to control at T3 (1.4 ± 0.6 vs. 2.2 ± 0.7 seconds, respectively, P < 0.05). Although renal function was preserved, the serum neutrophil gelatinase-associated lipocalin (NGAL) levels was higher at Hct 10% (0.033 ± 0.004 pg/μg protein) in comparison to control at T3 (0.021 ± 0.002 pg/μg protein. A mild correlation between CO and IRMTT (renal RBC velocity) (r -0.53; P = 0.001) and CO and NGAL levels (r 0.66; P = 0.001) was also found. Our results show that HES induced ANH is associated with a preserved intra renal blood volume, perfusion, and function in the clinical range of Hct (<15%). However, at severely low Hct (10%) ANH was associated with renal injury as indicated by increased NGAL levels. Changes in renal microcirculatory flow (CEUS and LSI) followed those seen in the sublingual microcirculation measured with HVM.
@enUltrasound insonification of microbubbles can locally enhance drug delivery by increasing the cell membrane permeability. To aid development of a safe and effective therapeutic microbubble, more insight into the microbubble-cell interaction is needed. In this in vitro study we aimed to investigate the initial 3D morphology of the endothelial cell membrane adjacent to individual microbubbles (n = 301), determine whether this morphology was affected upon binding and by the type of ligand on the microbubble, and study its influence on microbubble oscillation and the drug delivery outcome. High-resolution 3D confocal microscopy revealed that targeted microbubbles were internalized by endothelial cells, while this was not the case for non-targeted or IgG1-κ control microbubbles. The extent of internalization was ligand-dependent, since αvβ3-targeted microbubbles were significantly more internalized than CD31-targeted microbubbles. Ultra-high-speed imaging (~17 Mfps) in combination with high-resolution confocal microscopy (n = 246) showed that microbubble internalization resulted in a damped microbubble oscillation upon ultrasound insonification (2 MHz, 200 kPa peak negative pressure, 10 cycles). Despite damped oscillation, the cell's susceptibility to sonoporation (as indicated by PI uptake) was increased for internalized microbubbles. Monitoring cell membrane integrity (n = 230) showed the formation of either a pore, for intracellular delivery, or a tunnel (i.e. transcellular perforation), for transcellular delivery. Internalized microbubbles caused fewer transcellular perforations and smaller pore areas than non-internalized microbubbles. In conclusion, studying microbubble-mediated drug delivery using a state-of-the-art imaging system revealed receptor-mediated microbubble internalization and its effect on microbubble oscillation and resulting membrane perforation by pores and tunnels.
@enPhospholipid-coated targeted microbubbles are used for ultrasound molecular imaging and locally enhanced drug delivery, with the binding efficacy being an important trait. The use of organic solvent in microbubble production makes the difference between a heterogeneous or homogeneous ligand distribution. This study demonstrates the effect of ligand distribution on the binding efficacy of phospholipid-coated ανβ3-targeted microbubbles in vitro using a monolayer of human umbilical-vein endothelial cells and in vivo using chicken embryos. Microbubbles with a homogeneous ligand distribution had a higher binding efficacy than those with a heterogeneous ligand distribution both in vitro and in vivo. In vitro, 1.55× more microbubbles with a homogeneous ligand distribution bound under static conditions, while this was 1.49× more under flow with 1.25 dyn/cm2, 1.56× more under flow with 2.22 dyn/cm2, and 1.25× more in vivo. The in vitro dissociation rate of bound microbubbles with homogeneous ligand distribution was lower at low shear stresses (1-5 dyn/cm2). The internalized depth of bound microbubbles was influenced by microbubble size, not by ligand distribution. In conclusion, for optimal binding the use of organic solvent in targeted microbubble production is preferable over directly dispersing phospholipids in aqueous medium.
@enBacteria encased in a biofilm poses significant challenges to successful treatment, since both the immune system and antibiotics are ineffective. Sonobactericide, which uses ultrasound and microbubbles, is a potential new strategy for increasing antimicrobial effectiveness or directly killing bacteria. Several studies suggest that sonobactericide can lead to bacterial dispersion or sonoporation (i.e., cell membrane permeabilization); however, real-time observations distinguishing individual bacteria during and directly after insonification are missing. Therefore, in this study, we investigated, in real-time and at high-resolution, the effects of ultrasound-induced microbubble oscillation on Staphylococcus aureus biofilms, without or with an antibiotic (oxacillin, 1 µg/mL). Biofilms were exposed to ultrasound (2 MHz, 100–400 kPa, 100–1000 cycles, every second for 30 s) during time-lapse confocal microscopy recordings of 10 min. Bacterial responses were quantified using post hoc image analysis with particle counting. Bacterial dispersion was observed as the dominant effect over sonoporation, resulting from oscillating microbubbles. Increasing pressure and cycles both led to significantly more dispersion, with the highest pressure leading to the most biofilm removal (up to 83.7%). Antibiotic presence led to more variable treatment responses, yet did not significantly impact the therapeutic efficacy of sonobactericide, suggesting synergism is not an immediate effect. These findings elucidate the direct effects induced by sonobactericide to best utilize its potential as a biofilm treatment strategy.
@enCorrections to “Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging
Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: In Vitro and in Vivo Evaluation (IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control DOI: 10.1109/TUFFC.2016.2640342)
In the above article [1], the authors regret that there was a mistake in calculating the mol% of the microbubble coating composition used. For all experiments, the unit in mg/mL was utilized and the conversion mistake only came when converting to mol% in order to define the ratio between the coating formulation components. The correct molecular weight of PEG-40 stearate is 2046.54 g/mol [2], [3], not 328.53 g/mol. On page 556, Table I should read as shown here.
@enThe chicken embryo and the blood-vessel rich chorioallantoic membrane (CAM) is a valuable in vivo model to investigate biomedical processes, new ultrasound pulsing schemes, or novel transducers for contrast-enhanced ultrasound imaging and microbubble-mediated drug delivery. The reasons for this are the accessibility of the embryo and vessel network of the CAM as well as the low costs of the model. An important step to get access to the embryo and CAM vessels is to take the egg content out of the eggshell. In this protocol, three methods for taking the content out of the eggshell between day 5 and 8 of incubation are described thus allowing the embryos to develop inside the eggshell up to these days. The described methods only require simple tools and equipment and yield a higher survival success rate of 90% for 5-day, 75% for 6-day, 50% for 7-day, and 60% for 8-day old incubated eggs in comparison to ex ovo cultured embryos (~50%). The protocol also describes how to inject cavitation nuclei, such as microbubbles, into the CAM vascular system, how to separate the membrane containing the embryo and CAM from the rest of the egg content for optically transparent studies, and how to use the chicken embryo and CAM in a variety of short-term ultrasound experiments. The in vivo chicken embryo and CAM model is extremely relevant to investigate novel imaging protocols, ultrasound contrast agents, and ultrasound pulsing schemes for contrast-enhanced ultrasound imaging, and to unravel the mechanisms of ultrasound-mediated drug delivery.
@enPhotoacoustic (PA) imaging can be used to monitor flowing blood inside the microvascular and capillary bed. Ultrasound speckle decorrelation based velocimetry imaging was previously shown to accurately estimate blood flow velocity in mouse brain (micro-)vasculature. Translating this method to photoacoustic imaging will allow simultaneous imaging of flow velocity and extracting functional parameters like blood oxygenation. In this study, we use a pulsed laser diode and a quantitative method based on normalized first order field autocorrelation function of PA field fluctuations to estimate flow velocities in an ink tube phantom and in the microvasculature of the chorioallantoic membrane of a chicken embryo. We demonstrate how the decorrelation time of signals acquired over frames are related to the flow speed and show that the PA flow analysis based on this approach is an angle independent flow velocity imaging method.
@enErratum
Targeted Microbubble Mediated Sonoporation of Endothelial Cells in Vivo (IEEE Trans. Ultrason., Ferroelectr., Freq. Control (2014) 61:10 (1661–1667) DOI: 10.1109/TUFFC.2014.006440)
In the above article [1], the authors regret that there was a mistake in calculating the mol% of the microbubble coating composition. For all experiments, the unit in mg/mL was utilized and the conversion mistake only came when converting to mol% in order to define the ratio between the coating formulation components. The correct molecular weight of PEG-40 stearate is 2046.54 g/mol [2], [3], not 328.53 g/mol. On page 1661, paragraph II-A, it should read 'The coating was composed of DSPC (84.8 mol%; P 6517; Sigma-Aldrich, Zwijndrecht, The Netherlands);PEG-40 stearate (8.2 mol%; P 3440; Sigma-Aldrich); DSPE-PEG(2000) (5.9 mol%; 880125 P; Avanti Polar Lipids, Alabaster, AL, USA); and DSPE-PEG(2000)-biotin (1.1 mol%; 880129 C; Avanti Polar Lipids)'.
@enCorrigendum to “Non-linear Response and Viscoelastic Properties of Lipid-Coated Microbubbles
DSPC versus DPPC” (Ultrasound Med Biol 2015;41:1432–1445) (Non-linear Response and Viscoelastic Properties of Lipid-Coated Microbubbles: DSPC versus DPPC 41(5) (1432–1445), (S0301562915000356), (10.1016/j.ultrasmedbio.2015.01.004))
The authors regret that there was a mistake in reporting the mol% of the microbubble coating composition used. For all experiments, the unit in mg/mL was used and the conversion mistake occurred only when converting to mol% to define the ratio between the coating formulation components. The correct molecular weight of PEG-40 stearate is 2046.54 g/mol (Shen et al. 2008; Kilic and Bolukcu 2018), not 328.53 g/mol. On page 1433, the sentence should read “The lipid coating was composed of 84.8 mol% DSPC (P6517, Sigma-Aldrich, Zwijndrecht, Netherlands) or DPPC (850355, Avanti Polar Lipids, Alabaster, AL, USA); 8.2 mol% polyoxyethylene-40-stearate (PEG40 stearate, P3440, Sigma-Aldrich); 5.9 mol% 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)2000 (DSPE-PEG2000, 880125, Avanti Polar Lipids); and 1.1 mol% 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene glycol)-2000] (DSPE-PEG2000-biotin) (880129, Avanti Polar Lipids).” This correction does not change the conclusions published in this work. The authors apologize for any inconvenience caused.
@enErratum
Vibrational Responses of Bound and Nonbound Targeted Lipid-Coated Single Microbubbles (IEEE Trans. Ultrason., Ferroelectr., Freq. Control (2017) 64:5 (785–797) DOI: 10.1109/TUFFC.2017.2679160)
In the above article [1], the authors regret that there was a mistake in calculating the mol% of the microbubble coating composition. For all experiments, the unit in mg/mL was utilized and the conversion mistake only came when converting to mol% in order to define the ratio between the coating formulation components. The correct molecular weight of PEG-40 stearate is 2046.54 g/mol [2], [3], not 328.53 g/mol. On page 786, paragraph II-A, it should read 'The coating was composed of 84.8 mol% DSPC (P6517, Sigma-Aldrich, Zwijndrecht, The Netherlands) or DPPC (850355, Avanti Polar Lipids, Alabaster, AL, USA); 8.2 mol% polyoxyethylene-40-stearate (PEG-40 stearate, P3440, Sigma-Aldrich); 5.9 mol% 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (DSPE-PEG(2000), 880125, Avanti Polar Lipids); and 1.1 mol% 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene glycol)-2000] (DSPE-PEG(2000)-biotin, 880129, Avanti Polar Lipids).
@enPhospholipid-coated microbubbles are ultrasound contrast agents that can be employed for ultrasound molecular imaging and drug delivery. For safe and effective implementation, microbubbles must respond uniformly and predictably to ultrasound. Therefore, we investigated how lipid handling and phase distribution affected the variability in the acoustic behavior of microbubbles. Cholesterol was used to modify the lateral molecular packing of 1,2-distearoyl-sn-glycero-3phosphocholine (DSPC)-based microbubbles. To assess the effect of lipid handling, microbubbles were produced by a direct method, i.e., lipids directly dispersed in an aqueous medium or indirect method, i.e., lipids first dissolved in an organic solvent. The lipid phase and ligand distribution in the microbubble coating were investigated using confocal microscopy, and the acoustic response was recorded with the Brandaris 128 ultra-high-speed camera. In microbubbles with 12 mol% cholesterol, the lipids were miscible and all in the same phase, which resulted in more buckle formation, lower shell elasticity and higher shell viscosity. Indirect DSPC microbubbles had a more uniform response to ultrasound than direct DSPC and indirect DSPC-cholesterol microbubbles. The difference in lipid handling between direct and indirect DSPC microbubbles significantly affected the acoustic behavior. Indirect DSPC microbubbles are the most promising candidate for ultrasound molecular imaging and drug delivery applications.
@enUltrasound insonification of microbubbles can locally increase vascular permeability to enhance drug delivery. To control and optimize the therapeutic potential, we need to better understand the underlying biological mechanisms of the drug delivery pathways. The aim of this in vitro study was to elucidate the microbubble-endothelial cell interaction using the Brandaris 128 ultra-high-speed camera (up to 25 Mfps) coupled to a custom-built Nikon confocal microscope, to visualize both microbubble oscillation and the cellular response. Sonoporation and opening of cell-cell contacts by single αVβ3-targeted microbubbles (n = 152) was monitored up to 4 min after ultrasound insonification (2 MHz, 100–400 kPa, 10 cycles). Sonoporation occurred when microbubble excursion amplitudes exceeded 0.7 μm. Quantification of the influx of the fluorescent model drug propidium iodide upon sonoporation showed that the size of the created pore increased for larger microbubble excursion amplitudes. Microbubble-mediated opening of cell-cell contacts occurred as a cellular response upon sonoporation and did not correlate with the microbubble excursion amplitude itself. The initial integrity of the cell-cell contacts affected the susceptibly to drug delivery, since cell-cell contacts opened more often when cells were only partially attached to their neighbors (48%) than when fully attached (14%). The drug delivery outcomes were independent of nonlinear microbubble behavior, microbubble location, and cell size. In conclusion, by studying the microbubble–cell interaction at nanosecond and nanometer resolution the relationship between drug delivery pathways and their underlying mechanisms was further unraveled. These novel insights will aid the development of safe and efficient microbubble-mediated drug delivery.
@enUltrasound insonification of microbubbles can locally enhance drug delivery, but the microbubble–cell interaction remains poorly understood. Because intracellular calcium (Cai 2+) is a key cellular regulator, unraveling the Cai 2+ fluctuations caused by an oscillating microbubble provides crucial insight into the underlying bio-effects. Therefore, we developed an optical imaging system at nanometer and nanosecond resolution that can resolve Cai 2+ fluctuations and microbubble oscillations. Using this system, we clearly distinguished three Cai 2+ uptake profiles upon sonoporation of endothelial cells, which strongly correlated with the microbubble oscillation amplitude, severity of sonoporation and opening of cell–cell contacts. We found a narrow operating range for viable drug delivery without lethal cell damage. Moreover, adjacent cells were affected by a calcium wave propagating at 15 μm/s. With the unique optical system, we unraveled the microbubble oscillation behavior required for drug delivery and Cai 2+ fluctuations, providing new insight into the microbubble–cell interaction to aid clinical translation.
@enTherapeutic ultrasound strategies that harness the mechanical activity of cavitation nuclei for beneficial tissue bio-effects are actively under development. The mechanical oscillations of circulating microbubbles, the most widely investigated cavitation nuclei, which may also encapsulate or shield a therapeutic agent in the bloodstream, trigger and promote localized uptake. Oscillating microbubbles can create stresses either on nearby tissue or in surrounding fluid to enhance drug penetration and efficacy in the brain, spinal cord, vasculature, immune system, biofilm or tumors. This review summarizes recent investigations that have elucidated interactions of ultrasound and cavitation nuclei with cells, the treatment of tumors, immunotherapy, the blood–brain and blood–spinal cord barriers, sonothrombolysis, cardiovascular drug delivery and sonobactericide. In particular, an overview of salient ultrasound features, drug delivery vehicles, therapeutic transport routes and pre-clinical and clinical studies is provided. Successful implementation of ultrasound and cavitation nuclei-mediated drug delivery has the potential to change the way drugs are administered systemically, resulting in more effective therapeutics and less-invasive treatments.
@enUltrasound contrast agents consist of gas-filled coated microbubbles that oscillate upon ultrasound insonification. Their characteristic oscillatory response provides contrast enhancement for imaging and has the potential to locally enhance drug delivery. Since microbubble response depends on the local acoustic pressure, an ultrasound compatible chamber is needed to study their behavior and the underlying drug delivery pathways. In this study, we determined the amplitude of the acoustic pressure in the CLINIcell, an optically transparent chamber suitable for cell culture. The pressure field was characterized based on microbubble response recorded using the Brandaris 128 ultra-high speed camera and an iterative processing method. The results were compared to a control experiment performed in an OptiCell, which is conventionally used in microbubble studies. Microbubbles in the CLINIcell responded in a controlled manner, comparable to those in the OptiCell. For frequencies from 1 to 4 MHz, the mean pressure amplitude was -5.4 dB with respect to the externally applied field. The predictable ultrasound pressure demonstrates the potential of the CLINIcell as an optical, ultrasound, and cell culture compatible device to study microbubble oscillation behavior and ultrasound-mediated drug delivery.
@en