MV

257 records found

Objective: Described here is the development of an ultrasound matrix transducer prototype for high-frame-rate 3-D intra-cardiac echocardiography. Methods: The matrix array consists of 16 × 18 lead zirconate titanate elements with a pitch of 160 µm × 160 µm built on top of an appl ...
The accurate determination of the transfer function of ultrasound transducers is important for their design and operational performance. However, conventional methods for quantifying the transfer function, such as hydrophone measurements, radiation force balance, and pulse-echo m ...
Mapping corrosion depths along pipeline sections using guided-wave-based tomographic methods is a challenging task. Accurate defect sizing depends heavily on the precision of the forward model in guided wave tomography. This model is fitted to measured data using inversion techni ...
This article presents a pitch-matched transceiver application-specific integrated circuit (ASIC) for a wearable ultrasound device intended for transfontanelle ultrasonography, which includes element-level 20-V unipolar pulsers with transmit (TX) beamforming, and receive (RX) circ ...
This article presents an application-specific integrated circuit (ASIC) for catheter-based 3-D ultrasound imaging probes. The pitch-matched design implements a comprehensive architecture with high-voltage (HV) transmitters, analog front ends, hybrid beamforming analog-To-digital ...
The field of contrast-enhanced ultrasound (CEUS) combines nonlinearly oscillating microbubbles (MBs) with dedicated pulse sequences to reveal the vascular function of organs. Clinical ultrasound contrast agents consist of polydisperse MB suspensions with diameters ranging from 0. ...
Ultrasound imaging is an attractive imaging modality due to its low-cost and real-time feedback, although it often falls short in image quality compared to MRI and CT imaging. Conventional ultrasound image reconstruction, such as Delay-and-Sum beamforming, is derived from maximum ...
Objective: The aim of this study was to assess the feasibility and imaging options of contrast-enhanced volumetric ultrasound kidney vasculature imaging in a porcine model using a prototype sparse spiral array. Methods: Transcutaneous freehand in vivo imaging of two healthy porci ...
Volumetric echocardiography can potentially give a more complete picture of cardiac dynamics than its two-dimensional (2D) counterpart. Current clinical volumetric imaging probes have relatively low frame rates, and often require ECG gating to stitch together an entire volume. Th ...
This paper presents a pitch-matched transceiver ASIC integrated with a 2-D transducer array for a wearable ultrasound device for transfontanelle ultrasonography. The ASIC combines 8-fold multiplexing, 4-channel micro-beamforming (μ BF) and sub-array-level digitization to achieve ...
In contrast-enhanced echography, the simulation of nonlinear propagation of ultrasound through a population of oscillating microbubbles imposes a computational challenge. Also, the numerical complexity increases because each scatterer has individual properties. To address these p ...
This article presents a low-power and small-area transceiver application-specific integrated circuit (ASIC) for 3-D trans-fontanelle ultrasonography. A novel micro-beamforming receiver architecture that employs current-mode summation and boxcar integration is used to realize dela ...
An in vivo range verification technology for proton beam cancer therapy, preferably in real-time and with submillimeter resolution, is desired to reduce the present uncertainty in dose localization. Acoustical imaging technologies exploiting possible local interactions between pr ...
High frame rate three-dimensional (3D) ultrasound imaging would offer excellent possibilities for the accurate assessment of carotid artery diseases. This calls for a matrix transducer with a large aperture and a vast number of elements. Such a matrix transducer should be interfa ...
3-D contrast enhanced ultrasound enables better visualization of inherently 3-D vascular geometries compared to an intersecting plane. Additionally, it would allow the application of motion correction techniques for all directions. Both contrast detection and motion correction wo ...
Ultrasound (US) contrast agents consist of microbubbles ranging from 1 to 10 μm in size. The acoustical response of individual microbubbles can be studied with high-frame-rate optics or an "acoustical camera"(AC). The AC measures the relative microbubble oscillation while the opt ...

In this letter, a compact high-voltage (HV) transmit circuit for dense 2-D transducer arrays used in 3-D ultrasonic imaging systems is presented. Stringent area requirements are addressed by a unipolar pulser with embedded transmit/receive switch. Combined wi ...

Three-dimensional ultrasound has initially been used to address volumetric imaging for diagnostic purposes and represents the leading-edge technological orientation in both transducer and IC (integrated circuit) architecture and design. However, new applications are coming up lik ...
The integration of 2D ultrasonic transducer arrays and pitch-matched ASICs has enabled the realization of various 3D ultrasound imaging devices in recent years [1]-[3]. As applications such as 3D intravascular ultrasonography, intra-cardiac echocardiography, and trans-fontanelle ...