JT

30 records found

Developments in numerical simulation of flows and high-performance computing influence one another. More detailed simulation methods create a permanent need for more computational power, while new hardware developments often require changes to the software to exploit new hardware ...
We develop a computationally and numerically efficient method to calculate binding energies and corresponding wave functions of quantum mechanical three-body problems in low dimensions. Our approach exploits the tensor structure of the multidimensional stationary Schrödinger equa ...
There are several factorizations of multidimensional tensors into lower-dimensional components, known as ``tensor networks."" We consider the popular ``tensor-train"" (TT) format and ask, How efficiently can we compute a low-rank approximation from a full tensor on current multic ...
General matrix-matrix multiplications with double-precision real and complex entries (DGEMM and ZGEMM) in vendor-supplied BLAS libraries are best optimized for square matrices but often show bad performance for tall & skinny matrices, which are much taller than wide. NVIDIA’s ...
The Trilinos library LOCA (http://www.cs.sandia.gov/LOCA/ ) allows computing branches of steady states of large-scale dynamical systems like (discretized) nonlinear PDEs. The core algorithms typically are (pseudo-)arclength continuation, Newton–Krylov methods and (sparse) eigenva ...
The symmetric sparse matrix-vector multiplication (SymmSpMV) is an important building block for many numerical linear algebra kernel operations or graph traversal applications. Parallelizing SymmSpMV on today's multicore platforms with up to 100 cores is difficult due to the need ...

PHIST

A Pipelined, Hybrid-Parallel Iterative Solver Toolkit

The increasing complexity of hardware and software environments in high-performance computing poses big challenges on the development of sustainable and hardware-efficient numerical software. This article addresses these challenges in the context of sparse solvers. Existing solut ...

Essex

Equipping sparse solvers for exascale

The ESSEX project has investigated programming concepts, data structures, and numerical algorithms for scalable, efficient, and robust sparse eigenvalue solvers on future heterogeneous exascale systems. Starting without the burden of legacy code, a holistic performance engineerin ...
General matrix-matrix multiplications (GEMM) in vendor-supplied BLAS libraries are best optimized for square matrices but often show bad performance for tall & skinny matrices, which are much taller than wide. Nvidia’s current CUBLAS implementation delivers only a fraction of ...
We first briefly report on the status and recent achievements of the ELPA-AEO (Eigen value Solvers for Petaflop Applications—Algorithmic Extensions and Optimizations) and ESSEX II (Equipping Sparse Solvers for Exascale) projects. In both collaboratory efforts, scientists from the ...

CRAFT

A library for easier application-level Checkpoint/Restart and Automatic Fault Tolerance

In order to efficiently use the future generations of supercomputers, fault tolerance and power consumption are two of the prime challenges anticipated by the High Performance Computing (HPC) community. Checkpoint/Restart (CR) has been and still is the most widely used technique ...
We perform a numerical study of a two-component reaction–diffusion model. By using numerical continuation methods, combined with state-of-the-art sparse linear and eigenvalue solvers, we systematically compute steady state solutions and analyze their stability and relations in bo ...

GHOST

Building Blocks for High Performance Sparse Linear Algebra on Heterogeneous Systems

While many of the architectural details of future exascale-class high performance computer systems are still a matter of intense research, there appears to be a general consensus that they will be strongly heterogeneous, featuring “standard” as well as “accelerated” resources. To ...
The ESSEX project is an ongoing effort to provide exascale-enabled sparse eigensolvers, especially for quantum physics and related application areas. In this paper we first briefly summarize some key achievements that have been made within this project. Then we focus on a project ...
Numerous challenges have to be mastered as applications in scientific computing are being developed for post-petascale parallel systems. While ample parallelism is usually available in the numerical problems at hand, the efficient use of supercomputer resources requires not only ...
As we approach the exascale computing era, disruptive changes in the software landscape are required to tackle the challenges posed by manycore CPUs and accelerators. We discuss the development of a new ‘exascale enabled’ sparse solver repository (the ESSR) that addresses these c ...
Methods for the solution of sparse eigenvalue problems that are based on spectral projectors and contour integration have recently attracted more and more attention. Such methods require the solution of many shifted sparse linear systems of full size. In most of the literature co ...
Block variants of the Jacobi-Davidson method for computing a few eigenpairs of a large sparse matrix are known to improve the robustness of the standard algorithm when it comes to computing multiple or clustered eigenvalues. In practice, however, they are typically avoided becaus ...
We developed a finite volume package FVM and a solver HYMLS, both based on elements of the Trilinos EPETRA-package (see http://trilinos.sandia.gov/). HYMLS is a linear system solver for steady state incompressible Navier-Stokes equations coupled to transport equations in 2 and 3D ...