AP

Andreas Pieper

6 records found

GHOST

Building Blocks for High Performance Sparse Linear Algebra on Heterogeneous Systems

While many of the architectural details of future exascale-class high performance computer systems are still a matter of intense research, there appears to be a general consensus that they will be strongly heterogeneous, featuring “standard” as well as “accelerated” resources. To ...
The ESSEX project is an ongoing effort to provide exascale-enabled sparse eigensolvers, especially for quantum physics and related application areas. In this paper we first briefly summarize some key achievements that have been made within this project. Then we focus on a project ...
As we approach the exascale computing era, disruptive changes in the software landscape are required to tackle the challenges posed by manycore CPUs and accelerators. We discuss the development of a new ‘exascale enabled’ sparse solver repository (the ESSR) that addresses these c ...
Numerous challenges have to be mastered as applications in scientific computing are being developed for post-petascale parallel systems. While ample parallelism is usually available in the numerical problems at hand, the efficient use of supercomputer resources requires not only ...
Block variants of the Jacobi-Davidson method for computing a few eigenpairs of a large sparse matrix are known to improve the robustness of the standard algorithm when it comes to computing multiple or clustered eigenvalues. In practice, however, they are typically avoided becaus ...

Essex

Equipping sparse solvers for exascale

The ESSEX project investigates computational issues arising at exascale for large-scale sparse eigenvalue problems and develops programming concepts and numerical methods for their solution. The project pursues a coherent co-design of all software layers where a holistic performa ...