Marcel P. Zwiers
4 records found
1
Objective: Neuroimaging studies show structural alterations of various brain regions in children and adults with attention deficit hyperactivity disorder (ADHD), although nonrepli-cations are frequent. The authors sought to identify cortical characteristics related to ADHD using large-scale studies. Methods: Cortical thickness and surface area (based on the Desikan–Killiany atlas) were compared between case subjects with ADHD (N=2,246) and control subjects (N=1,934) for children, adolescents, and adults separately in ENIGMA-ADHD, a consortium of 36 centers. To assess familial effects on cortical measures, case subjects, unaffected siblings, and control subjects in the NeuroIMAGE study (N=506) were compared. Associations of the attention scale from the Child Behavior Checklist with cortical measures were determined in a pediatric population sample (Generation-R, N=2,707). Results: In the ENIGMA-ADHD sample, lower surface area values were found in children with ADHD, mainly in frontal, cingulate, and temporal regions; the largest significant effect was for total surface area (Cohen’s d=20.21). Fusiform gyrus and temporal pole cortical thickness was also lower in children with ADHD. Neither surface area nor thickness differences were found in the adolescent or adult groups. Familial effects were seen for surface area in several regions. In an overlapping set of regions, surface area, but not thickness, was associated with attention problems in the Generation-R sample. Conclusions: Subtle differences in cortical surface area are widespread in children but not adolescents and adults with ADHD, confirming involvement of the frontal cortex and highlighting regions deserving further attention. Notably, the alterations behave like endophenotypes in families and are linked to ADHD symptoms in the population, extending evidence that ADHD behaves as a continuous trait in the population. Future longitudinal studies should clarify individual lifespan trajectories that lead to nonsignificant findings in adolescent and adult groups despite the presence of an ADHD diagnosis.
@enLarge-scale distributed analyses of over 30,000 magnetic resonance imaging scans recently detected common genetic variants associated with the volumes of subcortical brain structures. Scaling up these efforts, still greater computational challenges arise in screening the genome for statistical associations at each voxel in the brain, localizing effects using "image-wide genome-wide" testing (voxelwise genome-wide association studies, vGWASs). Here we benefit from distributed computations at multiple sites to metaanalyze genome-wide image-wide data, allowing private genomic data to stay at the site where it was collected. Site-specific tensor-based morphometry is performed with a custom template for each site, using a multichannel registration. A single vGWAS testing 107 variants against 2million voxels can yield hundreds of terabytes (TB) of summary statistics, which would need to be transferred and pooled for metaanalysis. We propose a two-step method, which reduces data transfer for each site to a subset of single-nucleotide polymorphisms and voxels guaranteed to contain all significant hits.
@enIntracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (genetic = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.
@en