Dennis Van Der Meer
4 records found
1
Erratum to
Energy management system with pv power forecast to optimally charge evs at the workplace (IEEE Transactions on Industrial Informatics (2018) 14:1 (311-320) DOI: 10.1109/TII.2016.2634624)
This paper presents the design of an energy management system (EMS) capable of forecasting photovoltaic (PV) power production and optimizing power flows between PV system, grid, and battery electric vehicles (BEVs) at the workplace. The aim is to minimize charging cost while reducing energy demand from the grid by increasing PV self-consumption and consequently increasing sustainability of the BEV fleet. The developed EMS consists of two components: An autoregressive integrated moving average model to predict PV power production and a mixed-integer linear programming framework that optimally allocates power to minimize charging cost. The results show that the developed EMS is able to reduce charging cost significantly, while increasing PV self-consumption and reducing energy consumption from the grid. Furthermore, during a case study analogous to one repeatedly considered in the literature, i.e., dynamic purchase tariff and dynamic feed-in tariff, the EMS reduces charging cost by 118.44 % and 427.45% in case of one and two charging points, respectively, when compared to an uncontrolled charging policy.
@enIntracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (genetic = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.
@en