RK

Robert E. Kopp

6 records found

Sea-level rise amplifies the frequency of extreme sea levels by raising their baseline height. Amplifications are often projected for arbitrary future years and benchmark frequencies. Consequently, such projections do not indicate when flood risk thresholds may be crossed given t ...
Projections of relative sea level change (RSLC) are commonly reported at an annual mean basis. The seasonality of RSLC is often not considered, even though it may modulate the impacts of annual mean RSLC. Here, we study seasonal differences in twenty-first-century ocean dynamic s ...
The ice sheets covering Antarctica and Greenland present the greatest uncertainty in, and largest potential contribution to, future sea level rise. The uncertainty arises from a paucity of suitable observations covering the full range of ice sheet behaviors, incomplete understand ...
Despite considerable advances in process understanding, numerical modeling, and the observational record of ice sheet contributions to global mean sea-level rise (SLR) since the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change, severe limitations rem ...
Tidal marshes rank among Earth's vulnerable ecosystems, which will retreat if future rates of relative sea-level rise (RSLR) exceed marshes' ability to accrete vertically. Here, we assess the limits to marsh vulnerability by analyzing >780 Holocene reconstructions of tidal mar ...
Sea-level rise is a global problem, yet to forecast future changes, we must understand how and why relative sea level (RSL) varied in the past, on local to global scales. In East and Southeast Asia, details of Holocene RSL are poorly understood. Here we present two independent hi ...