EH
Emiel J.M. Hensen
54 records found
1
Oil has long been the dominant feedstock for producing fuels and chemicals, but coal, natural gas and biomass are increasingly explored alternatives. Their conversion first generates syngas, a mixture of CO and H2, which is then processed further using Fischer–Tropsch (FT) chemis
...
The influence of chromium and aluminium doping on the over-reduction during activation of iron-oxide-based water-gas shift catalysts was investigated using Mössbauer spectroscopy for the first time. In situ Mössbauer spectra of catalysts exposed to industrially relevant gas compo
...
Tuning stability of titania-supported Fischer-Tropsch catalysts
Impact of surface area and noble metal promotion
Cobalt oxidation is a relevant deactivation pathway of titania-supported cobalt catalysts used in Fischer-Tropsch synthesis (FTS). To work towards more stable catalysts, we studied the effect of the surface area of the titania support and noble metal promotion on cobalt oxidation
...
The study of titania-supported cobalt nanoparticles is relevant for industrial Fischer-Tropsch synthesis (FTS). Herein, we report about various deactivation pathways of cobalt supported on P25 titania (cobalt loading 2–8 wt%) under simulated high conversion conditions using in si
...
Understanding the deactivation mechanism of cobalt-based Fischer-Tropsch catalysts is of significant practical importance. Herein, we explored the role of manganese as a structural promoter on silica-supported cobalt nanoparticles under simulated high CO conversion conditions, i.
...
Non-oxidative coupling of methane is a promising route to obtain ethylene directly from natural gas. We synthesized siliceous [Fe]zeolites with MFI and CHA topologies and found that they display high selectivity (>90 % for MFI and >99 % for CHA) to ethylene and ethane among
...
A set of doped iron oxides (chromium, aluminum, gallium, indium, manganese, zinc, niobium) were prepared by a one-step coprecipitation/calcination approach evaluated for their WGS activity under industrially relevant conditions and characterized in detail. The WGS activity after
...
Copper promotion of chromium-doped iron oxide prepared via co-precipitation for high-temperature water–gas shift (WGS) catalysis is investigated. Low-temperature Mössbauer spectra demonstrate that copper doping delays hematite (α-Fe2O3) formation in the fres
...
The commercial application of cobalt-based Fischer-Tropsch synthesis (FTS) suffers from catalyst deactivation. One of the main deactivation mechanisms under industrial conditions is sintering. In this work, we explored the role of manganese oxide as a structural promoter against
...
The kinetics of the transformation of metallic Fe to the active Fe carbide phase at the start of the Fischer-Tropsch (FT) reaction were studied. The diffusion rates of C atoms going in or out of the lattice were determined using 13C-labeled synthesis gas in combination with measu
...
The formation of Fe-carbide phases is relevant to the synthesis of Fischer-Tropsch synthesis catalysts. We investigated the carburization of Raney Fe as a model catalyst using spectroscopic and temperature-programmed techniques. IR spectroscopy shows that CO dissociation already
...
Chromium promotion of iron oxide based water-gas shift (WGS) catalysts prepared via co-precipitation/calcination was investigated. Mössbauer spectroscopy and XRD evidence that chromium is incorporated in the calcined hematite (α-Fe2O3) precursor irrespective
...
Using model catalysts with well-defined particle sizes and morphologies to elucidate questions regarding catalytic activity and stability has gained more interest, particularly utilizing colloidally prepared metal(oxide) particles. Here, colloidally synthesized iron oxide nanopar
...
Coke deposition is one of the main challenges in the commercialisation of dry reforming of methane oversupported Ni catalysts. Besides the coke quantity, the structure of the deposits is also essential for thecatalyst lifetime. Accordingly, in this study, we analysed the effect o
...
The active sites on the methane dehydroaromatization (MDA) catalyst Mo/HZSM-5 are very hard to characterize, because they are present in various geometries and sizes and only form under reaction conditions with methane at 700 °C. To address these issues an experimental strategy i
...
Aromatization of furan and substituted furans over zeolite catalysts is a promising reaction to convert cellulose-derived compounds into valuable aromatic hydrocarbons and light olefins. A lack of understanding of the reaction mechanism however hinders further development of this
...
The Diels-Alder cycloaddition (DAC) is a powerful tool to construct C-C bonds. The DAC reaction can be accelerated in several ways, one of which is reactant confinement as observed in supramolecular complexes and Diels-Alderases. Another method is altering the frontier molecular
...
The development of novel technologies to convert renewable biomass feedstocks to fuels and chemicals is of increasing interest for making our chemical industry more sustainable. Plant biomass or its biomass-derived platform molecules are typically over-functionalized, requiring s
...
The Diels-Alder cycloaddition (DAC) reaction is a commonly employed reaction for the formation of C-C bonds. DAC catalysis can be achieved by using Lewis acids and via reactant confinement in aqueous nanocages. Low-silica alkali-exchanged faujasite catalysts combine these two fac
...
Hybrid materials bearing organic and inorganic motifs have been extensively discussed as playgrounds for the implementation of atomically resolved inorganic sites within a confined environment, with an exciting similarity to enzymes. Here, we present the successful design of a si
...