PV
P.F.A. Van Mieghem
282 records found
1
...
Transition from time-variant to static networks
Timescale separation in N -intertwined mean-field approximation of susceptible-infectious-susceptible epidemics
We extend the N-intertwined mean-field approximation (NIMFA) for the susceptible-infectious-susceptible (SIS) epidemiological process to time-varying networks. Processes on time-varying networks are often analyzed under the assumption that the process and network evolution happen
...
Individualized epidemic spreading models predict epilepsy surgery outcomes
A pseudo-prospective study
Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients, but up to 50% of patients continue to have seizures one year after the resection. In order to aid presurgical planning and predict postsurgical outcome on a patient-by-patient basis, we developed a
...
Although resource management schemes and algorithms for networks are well established, we present two novel ideas, based on graph theory, that solve inverse all shortest path problem. Given a symmetric and non-negative demand matrix, the inverse all shortest path problem (IASPP)
...
Federated learning is an effective method to train a machine learning model without requiring to aggregate the potentially sensitive data of agents in a central server. However, the limited communication bandwidth, the hardware of the agents and a potential application-specific l
...
Epidemic forecasts are only as good as the accuracy of epidemic measurements. Is epidemic data, particularly COVID-19 epidemic data, clean, and devoid of noise? The complexity and variability inherent in data collection and reporting suggest otherwise. While we cannot evaluate th
...
Although eigenvectors belong to the core of linear algebra, relatively few closed-form expressions exist, which we bundle and discuss here. A particular goal is their interpretation for graph-related matrices, such as the adjacency matrix of an undirected, possibly weighted graph
...
Except for the empty graph, we show that the orthogonal matrix X of the adjacency matrix A determines that adjacency matrix completely, but not always uniquely. The proof relies on interesting properties of the Hadamard product Ξ = X ◦ X. As a consequence of the theory, we show t
...
We propose a linear clustering process on a network consisting of two opposite forces: attraction and repulsion between adjacent nodes. Each node is mapped to a position on a one-dimensional line. The attraction and repulsion forces move the nodal position on the line, depending
...
Interpreting natural language is an increasingly important task in computer algorithms due to the growing availability of unstructured textual data. Natural Language Processing (NLP) applications rely on semantic networks for structured knowledge representation. The fundamental p
...
Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients, but only leads to seizure freedom for roughly two in three patients. To address this problem, we designed a patient-specific epilepsy surgery model combining large-scale magnetoencephalography (MEG)
...
For this study, we investigated efficient strategies for the recovery of individual links in power grids governed by the direct current (DC) power flow model, under random link failures. Our primary objective was to explore the efficacy of recovering failed links based solely on
...
Modelling temporal networks is an open problem that has attracted researchers from a diverse range of fields. Currently, the existing modelling solutions of time-evolving graphs do not allow us to provide an accurate graph sequence. In this paper, we examine the network dynamics
...
The influence of people's individual responses to the spread of contagious phenomena, like the COVID-19 pandemic, is still not well understood. We investigate the Markovian Generalized Adaptive Susceptible-Infected-Susceptible (G-ASIS) epidemic model. The G-ASIS model comprises m
...
Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients. However, seizure-freedom is currently achieved in only 2/3 of the patients after surgery. In this study we have developed an individualized computational model based on MEG brain networks to explore
...
A network consists of two interdependent parts: the network topology or graph, consisting of the links between nodes and the network dynamics, specified by some governing equations. A crucial challenge is the prediction of dynamics on networks, such as forecasting the spread of a
...
During the outbreak of a virus, perhaps the greatest concern is the future evolution of the epidemic: How many people will be infected and which regions will be affected the most? The accurate prediction of an epidemic enables targeted disease countermeasures (e.g., allocating me
...
How temporal modulations in functional interactions are shaped by the underlying anatomical connections remains an open question. Here, we analyse the role of structural eigenmodes, in the formation and dissolution of temporally evolving functional brain networks using resting-st
...
A complex fractional derivative can be derived by formally extending the integer k in the kth derivative of a function, computed via Cauchy's integral, to complex α. This straightforward approach reveals fundamental problems due to inherent nonanalyticity. A consequence is that t
...
Despite many studies on the transmission mechanism of the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it remains still challenging to efficiently reduce mortality. In this work, we apply a two-population Susceptible-Infected-Removed (SIR) model to investigate th
...
In this paper, we focus on the link density in random geometric graphs (RGGs) with a distance-based connection function. After deriving the link density in D dimensions, we focus on the two-dimensional (2D) and three-dimensional (3D) space and show that the link density is accura
...