In situ robotic construction is a type of construction where mobile robotic systems build directly on the building site. To enable on-site navigation, industrial robots can be integrated with mobile bases, while mobile, high-payload construction machines can be adapted for autono
...
In situ robotic construction is a type of construction where mobile robotic systems build directly on the building site. To enable on-site navigation, industrial robots can be integrated with mobile bases, while mobile, high-payload construction machines can be adapted for autonomous operation. With parallel advances in sensor processing, these robotic construction processes can become robust and capable of handling non-standard, local, as-found materials.
The potential of using autonomous, mobile robotic systems for the development of innovative circular construction processes is presented in three exemplary case studies:(i) robotically jammed structures from bulk materials, (ii) robotic earthworks with local and upcycled materials, and (iii) robotic additive manufacturing with earth-based materials. These processes exemplify key strategies for a circular industry through the utilisation of materials with low embodied greenhouse gas emissions and the implementation of fully reversible construction processes.
For each case study, we describe the robotic building process, the enabling technologies and workflows, and the major sustainability and circularity benefits compared to conventional construction methods. Moreover, we discuss the difficulty of industry transfer, considering challenges such as detailing, integration, and engineering validation. We conclude with an outlook towards future research avenues and industry adoption strategies.@en