JS

Jan C. Schippers

22 records found

This study aimed to calibrate and validate the MFI-UF method in order to ensure the accuracy of particulate fouling measurements in RO. Firstly, the MFI-UF calibration was examined using two solutions of standard particles (dextran and polystyrene). Two main criteria were investi ...
The objectives of this study are to assess the performance of antiscalants in increasing the recovery (≥85%) of a reverse osmosis (RO) plant treating anaerobic groundwater (GW) in Kamerik (the Netherlands), and to identify scalants/foulant that may limit RO recovery. Five differe ...
Rapid population growth and urbanization are two main drivers for the over-abstraction of conventional freshwater resources in various parts of the world, which leads to the situation of water scarcity (per capita availability <1000 m3 /year). Predictions based on t ...
The potential of membrane scaling control by a real-time optimization algorithm was investigated. The effect of antiscalant dosing was evaluated from the induction time measured in glass batch-reactors, and from the operational performance of a lab-scale reverse osmosis (RO) unit ...
This study aimed to quantify the effect of membrane surface porosity on particulate fouling predicted by the MFI-UF method at constant flux. Firstly, the surface porosity of polyethersulfone UF membranes (5–100 kDa) was determined using ultra-high resolution SEM. Thereafter, the ...
In this study, the removal of particulate, organic and biological fouling potential was investigated in the two-stage dual media filtration (DMF) pretreatment of a full-scale seawater reverse osmosis (SWRO) desalination plant. Moreover, the removal of fouling potential in two-sta ...
The role of phosphate and humic substances (HS) in preventing calcium carbonate scaling and their impact on antiscalant dose was investigated for a reverse osmosis (RO) system treating anaerobic groundwater (GW) (containing 2.1 mg/L orthophosphate and 6-8 mg/L HS). Experiments we ...
The bacterial growth potential (BGP) of drinking water is widely assessed either by flow cytometric intact cell count (BGPICC) or adenosine triphosphate (BGPATP) based methods. Combining BGPICC and BGPATP measurements has been previousl ...
Measuring the bacterial growth potential of seawater reverse osmosis (SWRO) feed water is an issue that is receiving growing attention. This study developed and demonstrated the applicability of the flow-cytometry (FCM)-based bacterial growth potential (BGP) method to assess the ...
Antiscalants are well known to prevent the precipitation of carbonate and sulphate scales of calcium in reverse osmosis (RO) applications, but according to literature their inhibitory ability against calcium phosphate is not clear. The objective of this study was to investigate i ...
Measuring bacterial growth potential (BGP) involves sample pre-treatment and inoculation, both of which may introduce contaminants in ultra-low nutrient water (e.g., remineralized RO permeate). Pasteurization pre-treatment may lead to denaturing of nutrients, and membrane filtrat ...
Although water produced by reverse osmosis (RO) filtration has low bacterial growth potential (BGP), post-treatment of RO permeate, which is necessary prior to distribution and human consumption, needs to be examined because of the potential re-introduction of nutrients/contamina ...
Several potential growth methods have been developed to monitor biological/organic fouling potential in seawater reverse osmosis (SWRO), but to date the correlation between these methods and biofouling of SWRO has not been demonstrated. In this research, the relation between a ne ...

ATP measurement in seawater reverse osmosis systems

Eliminating seawater matrix effects using a filtration-based method

A direct method for measuring adenosine-triphosphate (ATP) in seawater was developed recently, in which commercial reagents are added directly to seawater. However, calibration is required if seawater quality changes (such as changes in salinity, pH, Mg2+, Fe3+
For assessing the particulate fouling of water, the modified fouling index (MFI0.45) is a superior test to the silt density index (SDI). There is a need to compare both tests in terms of sensitivity, how they are affected by the filter material and the type of support plate and a ...
Various bacterial growth potential (BGP) methods have been developed recently to monitor biofouling in seawater reverse osmosis (SWRO) systems such as assimilable organic carbon and bacterial regrowth potential. However, the relationship between these methods and biofouling in SW ...
Controlling fouling in seawater reverse osmosis and ultrafiltration systems is a major challenge during algal blooms. This study investigates UF fouling potential of four marine algae and their algal organic matter (AOM): Chaetoceros affinis (Ch), Rhodomonas balthica (Rh), Tetras ...
Ensuring the biological stability of drinking water is essential for modern drinking water supply. To understand and manage the biological stability, it is critical that the bacterial growth in drinking water can be measured. Nowadays, advance treatment technologies, such as reve ...
The use of adenosine triphosphate (ATP) to monitor bacterial growth potential of seawater is currently not possible as ATP cannot be accurately measured at low concentration in seawater using commercially available luciferase-based ATP detection. The limitation is due to interfer ...
Algal-derived organic matter (AOM), particularly transparent exopolymer particles, has been suspected to facilitate biofilm development in membrane systems (e.g., seawater reverse osmosis). This study demonstrates the possible role of AOM on biofouling in membrane systems affecte ...