JY

86 records found

Visible light positioning (VLP) based on the received signal strength (RSS) can leverage a dense deployment of LEDs in future lighting infrastructure to provide accurate and energy-efficient indoor positioning. However, its positioning accuracy heavily depends on the density of c ...

FEDTRANS

CLIENT-TRANSPARENT UTILITY ESTIMATION FOR ROBUST FEDERATED LEARNING

Federated Learning (FL) is an important privacy-preserving learning paradigm that plays an important role in the Intelligent Internet of Things. Training a global model in FL, however, is vulnerable to the data noise across the clients. In this paper, we introduce FedTrans, a nov ...
Modern Knowledge Graphs (KGs) are inevitably noisy due to the nature of their construction process. Existing robust learning techniques for noisy KGs mostly focus on triple facts, where the factwise confidence is straightforward to evaluate. However, hyperrelational facts, where ...

“It Is a Moving Process”

Understanding the Evolution of Explainability Needs of Clinicians in Pulmonary Medicine

Clinicians increasingly pay attention to Artificial Intelligence (AI) to improve the quality and timeliness of their services. There are converging opinions on the need for Explainable AI (XAI) in healthcare. However, prior work considers explanations as stationary entities with ...

MRHF

Multi-stage Retrieval and Hierarchical Fusion for Textbook Question Answering

Textbook question answering is challenging as it aims to automatically answer various questions on textbook lessons with long text and complex diagrams, requiring reasoning across modalities. In this work, we propose MRHF, a novel framework that incorporates dense passage re-rank ...

Editorial

Special Issue on Human in the Loop Data Curation

This Special Issue of the Journal of Data and Information Quality (JDIQ) contains novel theoretical and methodological contributions on data curation involving humans in the loop. In this editorial, we summarize the scope of the issue and briefly describe its content.@en
Most existing bundle generation approaches fall short in generating fixed-size bundles. Furthermore, they often neglect the underlying user intents reflected by the bundles in the generation process, resulting in less intelligible bundles. This paper addresses these limitations t ...
In this paper, we argue that the way we have been training and evaluating ML models has largely forgotten the fact that they are applied in an organization or societal context as they provide value to people. We show that with this perspective we fundamentally change how we evalu ...

HybridEval

A Human-AI Collaborative Approach for Evaluating Design Ideas at Scale

Evaluating design ideas is necessary to predict their success and assess their impact early on in the process. Existing methods rely either on metrics computed by systems that are effective but subject to errors and bias, or experts' ratings, which are accurate but expensive and ...
Fairness toolkits are developed to support machine learning (ML) practitioners in using algorithmic fairness metrics and mitigation methods. Past studies have investigated practical challenges for toolkit usage, which are crucial to understanding how to support practitioners. How ...
In many practical applications, machine learning models are embedded into a pipeline involving a human actor that decides whether to trust the machine prediction or take a default route (e.g., classify the example herself). Selective classifiers have the option to abstain from ma ...

How do you feel?

Measuring User-Perceived Value for Rejecting Machine Decisions in Hate Speech Detection

Hate speech moderation remains a challenging task for social media platforms. Human-AI collaborative systems offer the potential to combine the strengths of humans' reliability and the scalability of machine learning to tackle this issue effectively. While methods for task handov ...

Perspective

Leveraging Human Understanding for Identifying and Characterizing Image Atypicality

High-quality data plays a vital role in developing reliable image classification models. Despite that, what makes an image difficult to classify remains an unstudied topic. This paper provides a first-of-its-kind, model-agnostic characterization of image atypicality based on huma ...
Federated Learning (FL) is an important privacy-preserving learning paradigm that is expected to play an essential role in the future Intelligent Internet of Things (IoT). However, model training in FL is vulnerable to noise and the statistical heterogeneity of local data across ...

DaisyRec 2.0

Benchmarking Recommendation for Rigorous Evaluation

Recently, one critical issue looms large in the field of recommender systems - there are no effective benchmarks for rigorous evaluation - which consequently leads to unreproducible evaluation and unfair comparison. We, therefore, conduct studies from the perspectives of practica ...
Handling failures in computer vision systems that rely on deep learning models remains a challenge. While an increasing number of methods for bug identification and correction are proposed, little is known about how practitioners actually search for failures in these models. We p ...

Editorial

Human-centered AI: Crowd computing

In this work, we address the information overload issue that learners in Massive Open Online Courses (MOOCs) face when attempting to close their knowledge gaps via the use of MOOC discussion forums. To this end, we investigate the recommendation of one-minute-resolution video cli ...
Unknown unknowns represent a major challenge in reliable image recognition. Existing methods mainly focus on unknown unknowns identification, leveraging human intelligence to gather images that are potentially difficult for the machine. To drive a deeper understanding of unknown ...
Music content annotation campaigns are common on paid crowdsourcing platforms. Crowd workers are expected to annotate complex music artifacts, a task often demanding specialized skills and expertise, thus selecting the right participants is crucial for campaign success. However, ...