EN

E.C. Noothout

46 records found

This article presents a pitch-matched transceiver application-specific integrated circuit (ASIC) for a wearable ultrasound device intended for transfontanelle ultrasonography, which includes element-level 20-V unipolar pulsers with transmit (TX) beamforming, and receive (RX) circ ...
This article presents an application-specific integrated circuit (ASIC) for catheter-based 3-D ultrasound imaging probes. The pitch-matched design implements a comprehensive architecture with high-voltage (HV) transmitters, analog front ends, hybrid beamforming analog-To-digital ...
Objective: Described here is the development of an ultrasound matrix transducer prototype for high-frame-rate 3-D intra-cardiac echocardiography. Methods: The matrix array consists of 16 × 18 lead zirconate titanate elements with a pitch of 160 µm × 160 µm built on top of an appl ...
Objective: The aim of this study was to assess the feasibility and imaging options of contrast-enhanced volumetric ultrasound kidney vasculature imaging in a porcine model using a prototype sparse spiral array. Methods: Transcutaneous freehand in vivo imaging of two healthy porci ...
Volumetric echocardiography can potentially give a more complete picture of cardiac dynamics than its two-dimensional (2D) counterpart. Current clinical volumetric imaging probes have relatively low frame rates, and often require ECG gating to stitch together an entire volume. Th ...
This paper presents a pitch-matched transceiver ASIC integrated with a 2-D transducer array for a wearable ultrasound device for transfontanelle ultrasonography. The ASIC combines 8-fold multiplexing, 4-channel micro-beamforming (μ BF) and sub-array-level digitization to achieve ...
This article presents a low-power and small-area transceiver application-specific integrated circuit (ASIC) for 3-D trans-fontanelle ultrasonography. A novel micro-beamforming receiver architecture that employs current-mode summation and boxcar integration is used to realize dela ...
High frame rate three-dimensional (3D) ultrasound imaging would offer excellent possibilities for the accurate assessment of carotid artery diseases. This calls for a matrix transducer with a large aperture and a vast number of elements. Such a matrix transducer should be interfa ...
Intra-cardiac echography (ICE) probes (Fig. 32.2.1) are widely used in electrophysiology for their good procedure guidance and relatively safe application. ASICs are increasingly employed in these miniature probes to enhance signal quality and reduce the number of connections nee ...
Common clamp-on ultrasonic flow meters consist of two single-element transducers placed on the pipe wall. Flow speed is measured noninvasively, i.e., without interrupting the flow and without perforating the pipe wall, which also minimizes safety risks and avoids pressure drops i ...
Two-dimensional (2-D) arrays offer volumetric imaging capabilities without the need for probe translation or rotation. A sparse array with elements seeded in a tapering spiral pattern enables one-to-one connection to an ultrasound machine, thus allowing flexible transmission and ...
The integration of 2D ultrasonic transducer arrays and pitch-matched ASICs has enabled the realization of various 3D ultrasound imaging devices in recent years [1]-[3]. As applications such as 3D intravascular ultrasonography, intra-cardiac echocardiography, and trans-fontanelle ...
Over the past decades, ultrasound imaging has made considerable progress based on the advancement of imaging systems as well as transducer technology. With the need for advanced transducer arrays with complex designs and technical requirements, there is also a need for suitable t ...
In this article, an application-specific integrated circuit (ASIC) for 3-D, high-frame-rate ultrasound imaging probes is presented. The design is the first to combine element-level, high-voltage (HV) transmitters and analog front-ends, subarray beamforming, and in-probe digitizat ...
This article presents a compact analog front-end (AFE) circuit for ultrasound receivers with linear-in-dB continuous gain control for time-gain compensation (TGC). The AFE consists of two variable-gain stages, both of which employ a novel complementary current-steering network (C ...
This work describes an ASIC design for high-frame-rate 3D intracardiac echocardiography probes. The chip is the first to combine element-level high-voltage pulsers and time-gain-compensation analog frontends as well as subarray beamformers and in-probe digitization in a pitch-mat ...

In this letter, a compact high-voltage (HV) transmit circuit for dense 2-D transducer arrays used in 3-D ultrasonic imaging systems is presented. Stringent area requirements are addressed by a unipolar pulser with embedded transmit/receive switch. Combined wi ...

This paper presents a compact analog front-end (AFE) circuit integrated with a 100µm-pitch 2D ultrasound transducer array for 3D imaging. To realize time-gain compensation, it consists of two variable gain stages, both of which employ a novel complementary current-steering networ ...
This paper presents an ultrasound transceiver application-specific integrated circuit (ASIC) directly integrated with an array of 12 × 80 piezoelectric transducer elements to enable next-generation ultrasound probes for 3D carotid artery imaging. The ASIC, implemented in a 0.18 µ ...
Over the past decades, real-time three-dimensional (3D) medical ultrasound has attracted much attention since it enables clinicians to diagnose more accurately. This calls for ultrasound matrix transducers with a large number of elements, which can be interfaced with an applicati ...