TI

10 records found

Users of automated vehicles will engage in other activities and take their eyes off the road, making them prone to motion sickness. To resolve this, the current paper validates models predicting sickness in response to motion and visual conditions. We validate published models of ...
A prime concern for automated vehicles is motion comfort, as an uncomfortable ride may reduce acceptance of the technology amongst the general population. However, it is not clear how transient motions typical for travelling by car affect the experience of comfort. Here, we deter ...
The human motion perception system has long been linked to motion sickness through state estimation conflict terms. However, to date, the extent to which available perception models are able to predict motion sickness, or which of the employed perceptual mechanisms are of most re ...
The relationship between the amplitude of motion and the accumulation of motion sickness in time is unclear. Here, we investigated this relationship at the individual and group level. Seventeen participants were exposed to four oscillatory motion stimuli, in four separate session ...
In future automated vehicles we will often engage in non-driving tasks and will not watch the road. This will affect postural stabilization and may elicit discomfort or even motion sickness in dynamic driving. Future vehicles will accommodate this with properly designed seats and ...
By 2050 a large proportion of the cars on our roads will be self-driving and completely automated. We will no longer be driving these vehicles, but will be transported comfortably as passengers. We will be able to indulge in all sorts of media items in our vehicles, do work, or e ...
High levels of vehicle automation are expected to increase the risk of motion sickness, which is a major detriment to driving comfort. The exact relation between motion sickness and discomfort is a matter of debate, with recent studies suggesting a relief of discomfort at the ons ...
Previous literature suggests a relationship between individual characteristics of motion perception and the peak frequency of motion sickness sensitivity. Here, we used well-established paradigms to relate motion perception and motion sickness on an individual level. We recruited ...
We investigated and modeled the temporal evolution of motion sickness in a highly dynamic sickening drive. Slalom maneuvers were performed in a passenger vehicle, resulting in lateral accelerations of 0.4 g at 0.2 Hz, to which participants were subjected as passengers for up to 3 ...
Background: Motion sickness (MS) as an area of scientific inquiry has mostly seen experimental work. A range of models attempt to predict MS, but have not been validated for a broad selection of sickening motion stimuli. By doing so this study aims to identify models that lead to ...