S.R. Turteltaub
63 records found
1
Impact experiments of thick fabric carbon/epoxy laminate specimens, with small thickness ratio, are conducted at distinct energy levels and thicknesses to characterise the damage process. These specimens and loading conditions are representative of a new generation of critical st
...
Computationally-efficient surrogate models based on a Polynomial Chaos Expansion (PCE) are developed to quantify the uncertainties in the fracture behavior and lifetime of a self-healing thermal barrier coating system (SH-TBC) and a benchmark conventional TBC system. The surrogat
...
The influence of the cohesive zone length on the crack driving force is quantified and analyzed in a representative system of particles dispersed in a matrix of a composite material. For heterogeneous material systems, e.g. particulate composites, it is known that as a crack appr
...
The thermal cyclic behavior of self-healing thermal barrier coatings (SH-TBC) is analyzed numerically to develop a lifetime prediction model. Representative microstructures are studied adopting a unit cell based multiscale modeling approach along with a simplified evolution model
...
Two distinct length scale transition methodologies are developed to establish effective traction-separation relations for fracture in composite materials within a hierarchical multiscale framework. The two methodologies, one kinetics-based and the other kinematics-based, specify
...
In this paper, design strategies are developed to explore better approaches of enforcing local layer-wise curvature constraints in the optimization of variable stiffness laminates in order to ensure the manufacturability of optimized designs based on the limitations of automated
...
Purpose: When simulating fluid-structure interaction (FSI), it is often essential that the no-slip condition is accurately enforced at the wetted boundary of the structure. This paper aims to evaluate the relative strengths and limitations of the penalty and Lagrange multiplier m
...
A multiscale fracture model is developed to study the influence of defects appearing at a microscale in a fiber-reinforced composite laminate. The model establishes a link between the geometrical characteristics of sub-ply imperfections that may be created during manufacturing an
...
The effect of splat interfaces on the fracture behavior of air plasma-sprayed thermal barrier coatings (APS-TBC) is analyzed using finite element modeling involving cohesive elements. A multiscale approach is adopted in which the explicitly resolved top coat microstructural featu
...
The influence of microstructural pore defects on fracture behaviour of Thermal Barrier Coatings (TBC) is analysed using finite element analysis involving cohesive elements. A concurrent multiscale approach is utilised whereby the microstructural features of the TBC are explicitly
...
A computational fracture analysis is conducted on a self-healing particulate composite employing a finite element model of an actual microstructure. The key objective is to quantify the effects of the actual morphology and the fracture properties of the healing particles on the o
...
Despite the increased use of thick fabric Carbon Fibre Reinforced Polymer (CFRP) materials in highly loaded aerospace structures (e.g., 20-50mm thick CFRP structures), a comprehensive characterisation of damage due to impact events on these structures remains an elusive and chall
...
A multiscale framework for the analysis of fracture is developed in order to determine the effective (homogenized) strength and fracture energy of a composite material based on the constituent's material properties and microstructural arrangement. The method is able to deal with
...
The performance of a self-healing Thermal Barrier Coating (TBC) containing dispersed healing particles depends crucially on the mismatch in thermomechanical properties between the healing particles and the TBC matrix. The present work systematically investigates this phenomenon b
...
We develop the general form of the variational multiscale method in a discontinuous Galerkin framework. Our method is based on the decomposition of the true solution into discontinuous coarse-scale and discontinuous fine-scale parts. The obtained coarse-scale weak formulation inc
...
A wedge loaded testing methodology to determine the fracture energy and strength of (semi-) brittle (metallo-)ceramics is presented. The methodology combines a tailored specimen geometry and a comprehensive finite element analysis based on cohesive zone modelling. The use of a si
...
We initiate the study of the discontinuous Galerkin residual-based variational multiscale (DG-RVMS) method for incorporating subgrid-scale behavior into the finite element solution of hyperbolic problems. We use the one-dimensional viscous Burgers equation as a model problem, as
...
A cohesive zone-based constitutive model, originally developed to model fracture, is extended to include a healing variable to simulate crack healing processes and thus recovery of mechanical properties. The proposed cohesive relation is a composite-type material model that accou
...
This work is concerned with the development of a framework to solve shape optimization problems for transient heat conduction problems within the context of isogeometric analysis (IGA). A general objective functional is used to accommodate both shape optimization and passive cont
...
In isogeometric shape optimization, the use of the search direction directly predicted from the discrete shape gradient makes the optimization history strongly dependent on the discretization. This discretization-dependency can affect the convergence and may lead the optimization
...