HF
H. Fang
11 records found
1
A computational 3D model that accounts for both nucleation and interface migration is a very useful tool to monitor and grasp the complexity of microstructure formation in low-alloyed steels. In the present study we have developed a 3D mixed-mode multigrain model for the austenit
...
It is still a big challenge to obtain excellent low-temperature toughness for bulk steel materials. Delamination is an effective method to improve low-temperature toughness. In the present study, delamination toughening in a low carbon microalloyed steel plate with elongated and
...
Solid-state phase transformations in steels cover a broad range of aspects. The underlying physics behind these phase transformations usually include nucleation, diffusion, lattice reconstruction and interactions between solutes and grain boundaries and interfaces. These features
...
When metals are mechanically loaded at elevated temperatures for extended periods of time, creep damage will occur in the form of cavities at grain boundaries. In the present experiments it is demonstrated that in binary iron-tungsten alloys creep damage can be self healed by sel
...
The magnetic configuration of a ferromagnetic system with mono-disperse and poly-disperse distribution of magnetic particles with inter-particle interactions has been computed. The analysis is general in nature and applies to all systems containing magnetically interacting partic
...
A 3D model has been developed to predict the average ferrite grain size and grain size distribution for an austenite-to-ferrite phase transformation during continuous cooling of an Fe-C-Mn steel. Using a Voronoi construction to represent the austenite grains, the ferrite is assum
...
We have analyzed the evolution of the ferrite fraction and average ferrite grain size during partial cyclic austenite-to-ferrite and ferrite-to-austenite phase transformations in an Fe-0.25C-2.1Mn (wt pct) steel using three-dimensional neutron depolarization (3DND). In the 3DND e
...
The precipitation of Au-rich precipitates on the external surfaces of Fe-Au alloys has been studied by scanning and transmission electron microscopy. The surface precipitates formed at elevated temperatures are found to self-organize in regular patterns and their growth rate is d
...
The autonomous filling of creep-loading induced grain-boundary cavities by gold-rich precipitates at a temperature of 550 °C has been studied as a function of the applied load for Fe-Au alloys using synchrotron X-ray nano-tomography. The alloy serves as a model alloy for future s
...
We have investigated the autonomous repair of creep damage by site-selective precipitation in a binary Fe-Mo alloy (6.2 wt pct Mo) during constant-stress creep tests at temperatures of 813 K, 823 K, and 838 K (540 °C, 550 °C, and 565 °C). Scanning electron microscopy studies on t
...