HN

H. Nemati

14 records found

We use direct numerical simulations (DNS) to investigate the turbulent modulation due to the presence of bubbles in vertical channels flowing downward. The Reynolds number for single-phase flow based on half channel height h* and friction velocity is Reτ= 18 ...
Direct numerical simulations have been adopted to study the turbulent heat transfer in forced convections of supercritical water at two different supercritical pressures P=23 MPa and P=25 MPa in a heated pipe with constant wall heat flux and a bulk Reynolds number of Re0
Bubbly turbulent flow in a channel is investigated using interface-resolved direct numerical simulation. An efficient coupled level-set volume-of-fluid solver based on a fast Fourier transform algorithm is implemented to enable a high resolution and fast computation at the same t ...
Flow and heat transfer of merging and bouncing droplets are studied for different Weber and Reynolds numbers and eccentricities of droplets by means of direct numerical simulation. Droplets are allowed to deform under the hydrodynamic forces of the surrounding flow. A coupled lev ...
This work investigates fully developed turbulent flows of carbon-dioxide close to its vapour-liquid critical point in a channel with a hot and a cold wall. Two direct numerical simulations are performed at low Mach numbers, with the trans-critical transition near the channel cent ...
We use direct numerical simulations to study the effect of thermal boundary conditions on developing turbulent pipe flows with fluids at supercritical pressure. The Reynolds number based on pipe diameter and friction velocity at the inlet is Reτ0=360 and Prandtl number at the inl ...
Fluids at supercritical pressure undergo a continuous phase from a liquid to a gas state if the fluid is heated above the critical pressure. During this phase transition the thermophysical properties of the fluid vary significantly within a narrow temperature range across the pse ...