TH
T. Hensgens
8 records found
1
Spiderweb Array
A Sparse Spin-Qubit Array
One of the main bottlenecks in the pursuit of a large-scale-chip-based quantum computer is the large number of control signals needed to operate qubit systems. As system sizes scale up, the number of terminals required to connect to off-chip control electronics quickly becomes un
...
Current implementations of quantum computers suffer from large numbers of control lines per qubit, becoming unmanageable with system scale up. Here, we discuss a sparse spin-qubit architecture featuring integrated control electronics significantly reducing the off-chip wire count
...
Electrostatically defined quantum dot arrays offer a compelling platform for quantum computation and simulation. However, tuning up such arrays with existing techniques becomes impractical when going beyond a handful of quantum dots. Here, we present a method for systematically a
...
Electrostatic confinement in semiconductors provides a flexible platform for the emulation of interacting electrons in a two-dimensional lattice, including in the presence of gauge fields. This combination offers the potential to realize a wide host of quantum phases. Capacitance
...
Emulating Fermi-Hubbard physics with quantum dots
From few to more and how to
Interacting electrons on material lattices can build up strong quantum correlations, which in turn can lead to the emergence of a wide range of novel and potentially useful magnetic and electronic material properties. Our understanding of this physics, however, is severely limite
...
Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlyin
...