JG
J. Gong
12 records found
1
Quantum computers have gained widespread interest from both industry and academia in the last decade as they are very promising for solving problems intractable by classical computers. However, there is a limited number of qubits in current quantum processors, which impedes the p
...
This article presents the first cryogenic phase-locked loop (PLL) operating at 4.2 K. The PLL is designed for the control system of scalable quantum computers. The specifications of PLL are derived from the required control fidelity for a single-qubit operation. By considering th
...
This article presents a 4-to-5GHz LC oscillator operating at 4.2K for quantum computing applications. The phase noise (PN) specification of the oscillator is derived based on the control fidelity for a single-qubit operation. To reveal the substantial gap between the theoretical
...
This article presents a low-jitter and low-spur charge-sampling phase-locked loop (CSPLL). A charge-domain sub-sampling phase detector is introduced to achieve a high phase-detection gain and to reduce the PLL in-band phase noise. Even without employing any power-hungry isolation
...
LC VCOs with low phase noise (PN) and an octave frequency-tuning range (FTR) are required for multistandard communication devices, software-defined radios, and wireline data links. A viable popular approach is to exploit multicore mode-switching VCOs for two reasons: (1) their PN
...
This paper presents a 15b cryo-CMOS DAC for multiplexed spin-qubit biasing implemented in a 22-nm FinFET process. The integrating-DAC architecture and the robust digitally-assisted high-voltage output stage enable a low power dissipation (157W) and small area (0.08mm2) independen
...
In a fractional-N PLL, it is beneficial to minimize the input range of its phase detector (PD) as it promotes better linearity and higher PD gain for suppressing noise contributions of the following loop components. This can be done by canceling the predicted instantaneous time o
...
In this article, we present a 4.5-5.1-GHz fractional-N digitally intensive phase-locked loop (DPLL) capable of maintaining its performance in face of a large supply ripple, thus enabling a direct connection to a switched-mode dc-dc converter. Supply pushing of its inductor-capaci
...
In quantum computing (QC) systems, cryogenic electronic interfaces can address the scalability and sheer interconnect complexity of the control/readout of thousands of quantum bits (qubits) required to execute practical quantum algorithms [1]. As shown in Fig.1-top, a frequency s
...
This paper presents a charge-sampling PLL (CSPLL), that demonstrates the best reported jitter-power FOM of-258.9 dB thanks to its high phase-detection gain and to the removal of the power-hungry buffer driving the phase detector. It also achieves-65 dBc of reference spur by both
...
Low-power, low phase noise (PN) cryogenic frequency generation is required for the control electronics of quantum computers. To avoid limiting the performance of quantum bits, the frequency noise of a PLL should be < 1.9 kHz rms [1]. However, it is challenging for RF oscillato
...
Accurate and low-noise generation and amplification of microwave signals are required for the manipulation and readout of quantum bits (qubits). A fault-tolerant quantum computer operates at deep cryogenic temperatures (i.e., <100 mK) and requires thousands of qubits for runni
...