DS
D. Shin
5 records found
1
High-aspect-ratio mechanical resonators are pivotal in precision sensing, from macroscopic gravitational wave detectors to nanoscale acoustics. However, fabrication challenges and high computational costs have limited the length-to-thickness ratio of these devices, leaving a larg
...
For decades, mechanical resonators with high sensitivity have been realized using thin-film materials under high tensile loads. Although there are remarkable strides in achieving low-dissipation mechanical sensors by utilizing high tensile stress, the performance of even the best
...
Mechanical resonators that possess coupled modes with harmonic frequency relations have recently sparked interest due to their suitability for controllable energy transfer and non-Hermitian dynamics. Here we show coupling between high-𝑄-factor (greater than 104) resonances with a
...
This study presents a new modeling technique to estimate the stiffness matrix of a thin-walled beam-joint structure using deep learning. When thin-walled beams meet at joints, significant sectional deformations occur, such as warping and distortion. These deformations should be c
...
Spiderweb Nanomechanical Resonators via Bayesian Optimization
Inspired by Nature and Guided by Machine Learning
From ultrasensitive detectors of fundamental forces to quantum networks and sensors, mechanical resonators are enabling next-generation technologies to operate in room-temperature environments. Currently, silicon nitride nanoresonators stand as a leading microchip platform in the
...