Reducing the absorber layer thickness below 1 μm for a regular copper indium gallium di-selenide (CIGS) solar cell lowers the minimum quality requirements for the absorber layer due to shorter electron diffusion length. Additionally, it reduces material costs and production time.
...
Reducing the absorber layer thickness below 1 μm for a regular copper indium gallium di-selenide (CIGS) solar cell lowers the minimum quality requirements for the absorber layer due to shorter electron diffusion length. Additionally, it reduces material costs and production time. Yet, having such a thin absorber reduces the cell efficiency significantly. This is due to incomplete light absorption and high Molybdenum/CIGS rear-surface recombination [1]. The aim of this research is to implement some innovative rear surface modifications on a 430 nm thick CIGS absorber layer to reduce both these affects: an aluminium oxide passivation layer to reduce the back-surface recombination and point contact openings using nano-particles for electrical contact. The impact of the implementation of all these rear-surface modifications on the opto-electrical properties of the CIGS solar cell will be discussed and analyzed in this paper.
@en