JS

Jeroen Staal

6 records found

Frontal polymerisation has the potential to bring unprecedented reductions in energy demand and process time to produce fibre reinforced polymer composites. Production of epoxy-based fibre reinforced polymer parts with high fibre volume content, commonly encountered in industry, ...
Radical induced cationic frontal polymerisation (RICFP) is considered a promising low energy method for processing of fibre reinforced polymers (FRPs). Optimisation of the local heat balance between reinforcement, epoxy resin and the surrounding mould is required to pave the way ...
Radical induced cationic frontal polymerization (RICFP) is considered as a promising method for processing of fiber reinforced polymers (FRPs). Optimization of the local heat flow is required to pave the way for its adaptation to an industrial processing method. In this work we p ...
Capillarity plays a crucial role in many natural and engineered systems, ranging from nutrient delivery in plants to functional textiles for wear comfort or thermal heat pipes for heat dissipation. Unlike nano- or microfluidic systems with well-defined pore network geometries and ...
Radical Induced Cationic Frontal Polymerisation (RICFP) has recently been proposed as a promising strategy for processing of epoxide carbon fibre reinforced polymers. Control of the local heat balance is crucial towards the production of industrial-quality composites, which is ty ...
In-plane permeability of small area (100 × 50 mm) alumina fiber woven fabrics grafted with aligned carbon nanotubes (CNT) was quantified by placing them in series with a glass mat of known permeability during a flow experiment. The methodology was first validated on a reference w ...