JH
Josie Hughes
13 records found
1
Robotics is entering our daily lives. The discipline is increasingly crucial in fields such as agriculture, medicine, and rescue operations, impacting our food, health, and planet. At the same time, it is becoming evident that robotic research must embrace and reflect the diversi
...
Toward Long-Lasting Large-Scale Soft Robots
The Durability Challenge in Architectured Materials
Soft robots promise groundbreaking advancements across various industries. However, soft robots are susceptible to wear, fatigue, and material degradation. Their durability and long-term reliability are often overlooked, despite being critical for the successful deployment of the
...
The control possibilities for soft robots have long been hindered by the need for reliable methods to estimate their configuration. Inertial measurement units (IMUs) can solve this challenge, but they are affected by well-known drift issues. This letter proposes a method to elimi
...
We show how a variety of techniques from Computer Graphics can be leveraged to intuitively control the shape (configuration) of arbitrary 3D Soft Robots in VR. Our pipeline, Virtual Reality Soft Robot Inverse Kinematics (VR-Soft IK), overcomes fundamental limitations of general-p
...
Smell Driven Navigation for Soft Robotic Arms
Artificial Nose and Control
Elephants and other animals heavily rely on the sense of smell to operate. Soft robots would also benefit from an artificial sense of smell, which could be helpful in typical soft robotic tasks such as search and rescue, pipe inspection, and all the tasks involving unstructured e
...
Piecewise Affine Curvature model
A Reduced-Order Model for Soft Robot-Environment Interaction Beyond PCC
Soft robot are celebrated for their propensity to enable compliant and complex robot-environment interactions. Soft robotic manipulators, or slender continuum structure robots have the potential to exploit these interactions to enable new exploration and manipulation capabilities
...
Soft robots aim to revolutionize how robotic systems interact with the environment thanks to their inherent compliance. Some of these systems are even able to modulate their physical softness. However, simply equipping a robot with softness will not generate intelligent behaviors
...
We show that large language models (LLMs), such as ChatGPT, can guide the robot design process, on both the conceptual and technical level, and we propose new human–AI co-design strategies and their societal implications.@en
The success of soft robots in displaying emergent behaviors is tightly linked to the compliant interaction with the environment. However, to exploit such phenomena, proprioceptive sensing methods which do not hinder their softness are needed. In this work we propose a new sensing
...
Fully exploiting soft robots' capabilities requires devising strategies that can accurately control their movements with the limited amount of control sources available. This task is challenging for reasons including the hard-to-model dynamics, the system's underactuation, and th
...
An experimental validation of the polynomial curvature model
Identification and optimal control of a soft underwater tentacle
The control possibilities for soft robots have long been hindered by the lack of accurate yet computationally treatable dynamic models of soft structures. Polynomial curvature models propose a solution to this quest for continuum slender structures. Nevertheless, the results prod
...
Controlling Maneuverability of a Bio-Inspired Swimming Robot Through Morphological Transformation
Morphology Driven Control of a Swimming Robot
Biology provides many examples of how body adaption can be used to achieve a change in functionality. The feather star, an underwater crinoid that uses feather arms to locomote and feed, is one such system; it releases its arms to distract prey and vary its maneuverability to hel
...
Sensing Soft Robot Shape Using IMUs
An Experimental Investigation
Shape estimation of soft robotic systems is challenging due to the range of deformations that can be achieved, and the limited availability of physically compatible sensors. We propose a method of reconstruction using Inertial Measurement Units (IMUs), which are mounted on segmen
...