Joint Doppler and DOA estimation using (Ultra-)Wideband FMCW signals
More Info
expand_more
Abstract
The joint Doppler and Direction-of-Arrival (DOA) estimation of moving targets using an (Ultra-)Wideband (UWB) frequency modulated continuous-wave (FMCW) antenna array radar is investigated. Besides the well-known range migration problem, another concern for wideband signals is the DOA estimation problem. For the first time, both problems are considered in this paper simultaneously, where the wideband DOA is transformed into a second-order coupling system similar to the range migration problem by using the property of the FMCW signal. A novel embedded compensation approach to eliminate the coupling terms caused by range migration and wideband DOA is proposed and 2D multiple signal classification (2D MUSIC) algorithm is subsequently applied with dynamic noise subspace to joint estimation of Doppler and DOA. Further, to reduce the computational load caused by multiple eigendecompositions of large matrices, efficient implementation methods are proposed and their performance in speed, accuracy and robustness is compared. The performance of the proposed methods is validated by the numerical simulations and is compared with Keystone MUSIC. Finally, it is shown that for a small number of targets, the Rayleigh-Ritz is the most efficient approach among them.