Mixed magnetism in magnetocaloric materials with first-order and second-order magnetoelastic transitions

More Info
expand_more

Abstract

Temperature dependent high-resolution x-ray diffraction measurements were used to characterize the magneto-elastic ferromagnetic transition of (Fe,Mn)2(P,Si,B) compounds. Across the transition, apart from a change in lattice parameters across the transition, the internal coordinates of Mn and Fe also change. This intrinsic degree of freedom allows Fe in the tetrahedral coordination to decrease the two interatomic distances with the 2c position and increase the two distances with the two 1b position, while the Fe–Mn distance remains constant. For Mn in the square based pyramidal coordination, all interatomic distances effectively remain constant. Electron density plots show that for second-order transitions, the observed changes are smaller and continuously extending over a wide temperature range in the ferromagnetic and paramagnetic states, due to short-range order. This study shows that the mechanism behind the phase transition in Fe2P-based materials is an isostructural transition that is equal for both first- and second-order transitions.