First Experiments and Commissioning of the ORCHID Nozzle Test Section

More Info
expand_more

Abstract

This paper reports one of the initial NICFD experiments in the nozzle test section of the ORCHID aimed at providing accurate data for the validation of flow solvers, albeit, at this stage of the research, the focus is limited to inviscid phenomena. Notably, a series of schlieren photographs displaying Mach waves in the supersonic flow of the dense vapor of siloxane MM were obtained and are documented here for the commissioning experiment, namely, for inlet conditions corresponding to a stagnation temperature and pressure of T0=252∘C and P0=18.4bara. At these inlet conditions the compressibility factor of the fluid is Z0= 0.58. The digital processing of the schlieren images allowed to estimate multiple angles formed by the Mach waves stemming from the upper and lower nozzle surfaces because of the infinitesimal density perturbations generated by the, albeit small, roughness of the metal surfaces. These values are related to the local Mach number by a simple geometric relation. Moreover, the total expanded uncertainty in the Mach number was computed. This information together with the estimate of the average Mach number was used for a first assessment of the capability of evaluating NICFD effects occurring in a dense organic vapor flow of MM by comparison with the results of CFD simulations. The outcome of the comparison was satisfactory. It can thus be inferred that the nozzle test section has been commissioned and it is ready for experimental campaigns in which its full potential in terms of measurements accuracy, repeatability, and operational flexibility will be exploited.

Files

Beltrame2021_Chapter_FirstExpe... (pdf)
(pdf | 2.17 Mb)
- Embargo expired in 15-08-2021
Unknown license