Elderly Care
Using Deep Learning for Multi-Domain Activity Classification
More Info
expand_more
Abstract
Nowadays, health monitoring issues are increasing as the worldwide population is aging. In this paper, the radar modality is used to classify with radar signature automatically. The classic approach is to extract features from micro-Doppler signatures for classification. This data representation domain has its limitations for activities presenting similar accelerations like a frontal fall and picking up an object from the floor that lead to wrongly labeled activities. In this work, we propose to combine multiple radar data domains with deep learning. Features are extracted from four domains, namely, Range-Time, Range-Doppler, Doppler-Time, and Cadence Velocity Diagram. The extracted features are set as the input of a Convolutional Neural Network, yielding 91% accuracy with 10-fold cross-validation based on the University of Glasgow “Radar signatures of human activities” open dataset.
Files
Download not available