Kinematic and mechanical response of dry woven fabrics in through-thickness compression

Virtual fiber modeling with mesh overlay technique and experimental validation

More Info
expand_more

Abstract

The through-thickness compressive behavior of fabric reinforcements is crucial in liquid composite molding manufacturing processes. Predictive simulations of the compressive response are thus necessary to enable a virtual processing workflow. These are complex however, as the compressive behavior of the reinforcement fabrics is non-linear. Altough virtual fiber modeling has proven to be a strong kinematical tool, it cannot predict the compressive response due to the lack of bending stiffness in the virtual fibers. Here, we describe a solution that enables predictive compressive simulations through hybrid virtual fibers. It is based on an overlay mesh-element technique, combining both (i) finite elements that determine the in-plane fiber properties as well as (ii) finite elements that determine out-of-plane fiber bending. Using these hybrid virtual fibers, the through-thickness compression of a twill woven fabric ply is simulated and experimentally validated using both μCT-based as compliance-based measurements. Excellent agreement between simulation and experiment is obtained for the right set of input parameters.

Files

Daelamans_et_al_2021_CSTE_post... (pdf)
(pdf | 2.59 Mb)
- Embargo expired in 11-02-2023
1_s2.0_S0266353821000622_main.... (pdf)
(pdf | 8.96 Mb)
Unknown license

Download not available