SG
S. Ghiassi
3 records found
1
Multi-label learning is an emerging extension of the multi-class classification where an image contains multiple labels. Not only acquiring a clean and fully labeled dataset in multi-label learning is extremely expensive, but also many of the actual labels are corrupted or missin
...
Multi-label learning is becoming more and moreimportant as real-world data often contains multi-ple labels. The dataset used for learning such aclassifier is of great importance. Acquiring a cor-rectly labelled dataset is however a difficult task.Active le
...
Multi-label learning is one of the hot problems in the field of machine learning. The deep neural networks used to solve it could be quite complex and have a huge capacity. This enormous capacity, however, could also be a negative, as they tend to eventually overfit the undesirab
...