C. Siemes
37 records found
1
Thermosphere mass density and crosswind can be derived from accelerometer and GNSS tracking data. However, present datasets are often provided without comprehensive uncertainty specifications. We present a newly developed method that propagates measurement noise and errors in the
...
Uncertainties in radiation pressure modelling play a significant role in the thermospheric density and crosswind observations derived from the GRACE-FO accelerometer, especially during low solar activity. Under such conditions, the radiation pressure acceleration matches the magn
...
The uncertainty on Thermospheric Mass Density (TMD), as derived from atmospheric models, can reach extremely high values. This effect is noteworthy in Low Earth Orbit (LEO), where atmospheric drag is the main perturbing force, as well as the most uncertain. LEO harbours almost 18
...
Daedalus MASE (mission assessment through simulation exercise)
A toolset for analysis of in situ missions and for processing global circulation model outputs in the lower thermosphere-ionosphere
Daedalus MASE (Mission Assessment through Simulation Exercise) is an open-source package of scientific analysis tools aimed at research in the Lower Thermosphere-Ionosphere (LTI). It was created with the purpose to assess the performance and demonstrate closure of the mission obj
...
The thermospheric neutral density response to the 7–9 September 2017 storms is investigated based on the Swarm satellite observations and the thermosphere-ionosphere-electrodynamic general circulation model (TIEGCM) simulation. The Swarm data depicted a prominent interhemispheric
...
In Low Earth Orbit (LEO), atmospheric drag is the largest contributor to trajectory prediction error. The current thermospheric density model used by the Combined Space Operations Center (CSpOC) in operations is the High Accuracy Satellite Drag Model (HASDM). Since HASDM is not a
...
We statistically investigate fluctuation amplitudes (normalized to the background values) of dayside low-/mid-latitude upper-thermospheric mass density as observed by the Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow-On (GRACE-FO) spacecraft at ∼500 km altitude
...
On 3 February 2022, at 18:13 UTC, SpaceX launched and a short time later deployed 49 Starlink satellites at an orbit altitude between 210 and 320 km. The satellites were meant to be further raised to 550 km. However, the deployment took place during the main phase of a moderate g
...
We present new neutral mass density and crosswind observations for the CHAMP, GRACE, and GRACE-FO missions, filling the last gaps in our database of accelerometer-derived thermosphere observations. For consistency, we processed the data over the entire lifetime of these missions,
...
The quality and distribution in time and space of available atmospheric observations are crucial for the accuracy of semi-empirical thermosphere models. However, datasets can be inconsistent, and their qualities and resolutions are often unequal. The main thermospheric density da
...
Swarm is the European Space Agency (ESA)'s first Earth observation constellation mission, which was launched in 2013 to study the geomagnetic field and its temporal evolution. Two Langmuir probes aboard each of the three Swarm satellites provide in situ measurements of plasma par
...
Satellite drag modeling remains the largest source of uncertainty affecting space operations in low Earth orbit. The uncertainty stems from inaccurate models for mass density and drag coefficient. Drag coefficient modeling also impacts scientific knowledge on the physics and dyna
...
CASPA-ADM
A mission concept for observing thermospheric mass density
Cold Atom technology has undergone rapid development in recent years and has been demonstrated in space in the form of cold atom scientific experiments and technology demonstrators, but has so far not been used as the fundamental sensor technology in a science mission. The Europe
...
Cold Atom Interferometry for Enhancing the Radio Science Gravity Experiment
A Phobos Case Study
Interplanetary missions have typically relied on Radio Science (RS) to recover gravity fields by detecting their signatures on the spacecraft trajectory. The weak gravitational fields of small bodies, coupled with the prominent influence of confounding accelerations, hinder the e
...
The re-estimates of thermospheric winds from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) accelerometer measurements were released in April 2019. In this study, we compared the new-released GOCE crosswind (cross-track wind) data with the horizontal winds m
...
Lower-Thermosphere-ionosphere (LTI) quantities
Current status of measuring techniques and models
The lower-Thermosphere-ionosphere (LTI) system consists of the upper atmosphere and the lower part of the ionosphere and as such comprises a complex system coupled to both the atmosphere below and space above. The atmospheric part of the LTI is dominated by laws of continuum
...
ESA’s Next Generation Gravity Mission (NGGM) is a candidate Mission of Opportunity for ESA–NASA cooperation in the frame of the Mass Change and Geosciences International Constellation (MAGIC). The mission aims at enabling long-term monitoring of the temporal variations of Earth’s
...
Gravity fields derived from GPS tracking of the three Swarm satellites have shown artifacts near the geomagnetic equator, where the carrier phase tracking on the L2 frequency is unable to follow rapid ionospheric path delay changes due to a limited tracking loop bandwidth of only
...
The satellite acceleration data from the CHAMP, GRACE, GOCE, and Swarm missions provide detailed information on the thermosphere density over the last two decades. Recent work on reducing errors in modelling the spacecraft geometry has greatly reduced scale differences between th
...
After the detection of many anomalies in the Swarm accelerometer data, an alternative method has been developed to determine thermospheric densities for the three-satellite mission. Using a precise orbit determination approach, non-gravitational and aerodynamic-only accelerations
...