GE
G. B. Esplugues
6 records found
1
Gas phase Elemental abundances in Molecular cloudS (GEMS)
VII. Sulfur elemental abundance
Context. Gas phase Elemental abundances in molecular CloudS (GEMS) is an IRAM 30-m Large Program aimed at determining the elemental abundances of carbon (C), oxygen (O), nitrogen (N), and sulfur (S) in a selected set of prototypical star-forming filaments. In particular, the elem
...
When studying chemistry of photodissociation regions (PDRs), time dependence becomes important as visual extinction increases, since certain chemical time-scales are comparable to the cloud lifetime. Dust temperature is also a key factor, since it significantly influences gas tem
...
Context. Spectroscopic studies of ices in nearby star-forming regions indicate that ice mantles form on dust grains in two distinct steps, starting with polar ice formation (H2O rich) and switching to apolar ice (CO rich). Aims. We test how well the picture applies to more diffus
...
The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at w
...
Erratum
Surface chemistry in photodissociation regions (Astronomy and Astrophysics (2016) 591 (A52) DOI: 10.1051/0004-6361/201528001)
Context. The presence of dust can strongly affect the chemical composition of the interstellar medium. We model the chemistry in photodissociation regions (PDRs) using both gas-phase and dust-phase chemical reactions. Aims. Our aim is to determine the chemical compositions of the
...